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ABSTRACT
Adaptive Operator Selection (AOS) is an approach that controls

discrete parameters of an Evolutionary Algorithm (EA) during the

run. In this paper, we propose an AOS method based on Double

Deep Q-Learning (DDQN), a Deep Reinforcement Learning method,

to control the mutation strategies of Differential Evolution (DE).

The application of DDQN to DE requires two phases. First, a neural

network is trained offline by collecting data about the DE state

and the benefit (reward) of applying each mutation strategy during

multiple runs of DE tackling benchmark functions. We define the

DE state as the combination of 99 different features and we ana-

lyze three alternative reward functions. Second, when DDQN is

applied as a parameter controller within DE to a different test set

of benchmark functions, DDQN uses the trained neural network to

predict which mutation strategy should be applied to each parent

at each generation according to the DE state. Benchmark functions

for training and testing are taken from the CEC2005 benchmark

with dimensions 10 and 30. We compare the results of the proposed

DE-DDQN algorithm to several baseline DE algorithms using no

online selection, random selection and other AOS methods, and

also to the two winners of the CEC2005 competition. The results

show that DE-DDQN outperforms the non-adaptive methods for

all functions in the test set; while its results are comparable with

the last two algorithms.
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1 INTRODUCTION
Evolutionary algorithms for numerical optimization come in many

variants involving different operators, such as mutation strategies

and types of crossover. In the case of differential evolution (DE) [25],

experimental analysis has shown that different mutation strategies

perform better for specific optimization problems [17] and that

choosing the right mutation strategy at specific stages of an opti-

mization process can further improve the performance of DE [7]. As

a result, there has been great interest in methods for controlling or

selecting the value of discrete parameters while solving a problem,

also called adaptive operator selection (AOS).
In the context of DE, there is a finite number of mutation strate-

gies (operators) that can be applied at each generation to produce

new solutions from existing (parent) solutions. An AOS method

will decide, at each generation, which operator should be applied,

measure the effect of this application and adapt future choices ac-

cording to some reward function. An inherent difficulty is that we

do not know which operator is the most useful at each generation

to solve a previously unseen problem. Moreover, different operators

may be useful at different stages of an algorithm’s run.

There are multiple AOS methods proposed in the literature [1,

9, 12] and several of them are based on reinforcement learning (RL)
techniques such as probability matching [8, 23], multi-arm ban-

dits [9],Q(λ) learning [20] and SARSA [4, 5, 22], among others [10].

These RL methods use one or few features to capture the state

of the algorithm at each generation, select an operator to be ap-

plied and calculate a reward from this application. Typical state

features are fitness standard deviation, fitness improvement from

parent to offspring, best fitness, and mean fitness [5, 10]. Typical

reward functions measure improvement achieved over the previous

generation [10]. Other parameter control methods use an offline

training phase to collect more data about the algorithm than what

is available within a single run. For example, Kee et al. [14] uses

two types of learning: table-based and rule-based. The learning is

performed during an offline training phase that is followed by an

https://doi.org/10.1145/3321707.3321813
https://doi.org/10.1145/3321707.3321813
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online execution phase where the learned tables or rules are used

for choosing parameter values. More recently, Karafotias et al. [13]

trains offline a feed-forward neural network with no hidden layers

to control the numerical parameter values of an evolution strategy.

To the best of our knowledge, none of the AOS methods that use

offline training are based on reinforcement learning.

In this paper, we adapt Double Deep Q-Network (DDQN) [28],
a deep reinforcement learning technique that uses a deep neural

network as a prediction model, as an AOS method for DE. The main

differences between DDQN and other RL methods are the possi-

bility of training DDQN offline on large amounts of data and of

using a larger number of features to define the current state. When

applied as an AOS method within DE, we first run the proposed

DE-DDQN algorithm many times on training benchmark problems

by collecting data on 99 features, such as the relative fitness of the

current generation, mean and standard deviation of the population

fitness, dimension of the problem, number of function evaluations,

stagnation, distance among solutions in decision space, etc. After

this training phase, the DE-DDQN algorithm can be applied to un-

seen problems. It will observe the run time value of these features

and predict which mutation strategy should be used at each gen-

eration. DE-DDQN also requires the choice of a suitable reward

definition to facilitate learning of a prediction model. Some RL-

based AOS methods calculate rewards per individual [4, 20], while

others calculate it per generation [22]. Moreover, reward functions

can be designed in different ways depending on the problem at

hand. For example, Karafotias et al. [11] defines and compares four

per-generation reward definitions for RL-based AOS methods. Here,

we also find that the reward definition has a strong effect on the

performance of DE-DDQN and, hence, we analyze three alterna-

tive reward definitions that assign reward for each application of a

mutation strategy.

As an experimental benchmark, we use functions from the cec2005

special session on real-parameter optimization [26]. In particular,

the proposed DE-DDQN method is first trained on 16 functions for

both dimensions 10 and 30, i.e., a total of 32 training functions. Then,

we run the trained DE-DDQN on a different set of 5 functions, also

for dimensions 10 and 30, i.e., a total of 10 test functions.We also run

on these 10 test functions the following algorithms for comparison:

four DE variants, each using a single specific mutation strategy, DE

with a random selection among mutation strategies at each genera-

tion, DE using various AOS methods (PM-AdapSS [8], F-AUC [9],

and RecPM-AOS [23]), and the two winners of CEC2005 [26] com-

petition, which are both variants of CMAES: LR-CMAES (LR) [2]

and IPOP-CMAES (IPOP) [3].

Our experimental results show that the DE variants using AOS

completely outperform the DE variants using a fixed mutation strat-

egy or a random selection. Although a non-parametric post-hoc

test does not find that the differences between the CMAES algo-

rithms and the AOS-enabled DE algorithms (including DE-DDQN)

are statistically significant, DE-DDQN is the second best approach,

behind IPOP-CMAES, in terms of mean rank.

The paper is structured as follows. First, we give a brief intro-

duction to DE, mutation strategies and deep reinforcement learn-

ing. In Sect. 3, we introduce our proposed DE-DDQN algorithm,

and explain its training and online (deployment) phases. Section 4

introduces the state features and reward functions used in the

experiments, which are described in Sect. 5. We summarise our

conclusions in Sect. 6.

2 BACKGROUND
2.1 Differential Evolution
Differential Evolution (DE) [21] is a population-based algorithm

that uses a mutation strategy to create an offspring solution ®u. A
mutation strategy is a linear combination of three or more par-

ent solutions ®xi , where i is the index of a solution in the current

population. Some mutation strategies are good at exploration and

others at exploitation, and it is well-known that no single strategy

performs best for all problems and for all stages of a single run. In

this paper, we consider these frequently used mutation strategies:

“rand/1”: ®ui = ®xr1 + F · (®xr2 − ®xr3 )
“rand/2”: ®ui = ®xr1 + F · (®xr2 − ®xr3 + ®xr4 − ®xr5 )

“rand-to-best/2”: ®ui = ®xr1 + F · (®x
best

− ®xr1 + ®xr2 − ®xr3 + ®xr4 − ®xr5 )
“curr-to-rand/1”: ®ui = ®xi + F · (®xr1 − ®xi + ®xr2 − ®xr3 )

where F is a scaling factor, ®ui and ®xi are the i-th offspring and

parent solution vectors in the population, respectively, ®x
best

is the

best parent in the population, and r1, r2, r3, r4, and r5 are randomly

generated indexes within [1,NP], where NP is the population size.

An additional numerical parameter, the crossover rate (CR ∈ [0, 1]),

determines whether the mutation strategy is applied to each dimen-

sion of ®xi to generate ®ui . At least one dimension of each ®xi vector
is mutated.

2.2 Deep Reinforcement Learning
In RL [27], an agent takes actions in an environment that returns the

reward and the next state. The goal is to maximize the cumulative

reward at each step. RL estimates the value of an action given a

state called Q-value to learn a policy that returns an action given

a state. A variety of different techniques are used in RL to learn

this policy and some of them are applicable only when the set of

actions is finite.

When the features that define a state are continuous or the set

of states is very large, the policy becomes a function that implicitly

maps between state features and actions, as opposed to keeping an

explicit map in the form of a lookup table. In deep reinforcement
learning, this function is approximated by a deep neural network

and the weights of the network are optimized to maximize the

cumulative reward.

Deep Q-network (DQN) [18] is a deep RL technique that extends

Q-learning to continuous features by approximating a non-linear Q-

value function of the state features using a neural network (NN). The

classical DQN algorithm sometimes overestimates the Q-values of

the actions, which leads to poor policies. Double DQN (DDQN) [28]

was proposed as a way to overcome this limitation and enhance the

stability of the Q-values. DDQN employs two neural networks: a

primary network selects an action and a target network generates

a target Q-value for that action. The target-Q values are used to

compute the loss function for every action during training. The

weights of the target network are fixed, and only periodically or

slowly updated to the primary Q-networks values.

In this work, we integrate DDQN into DE as an AOS method

that selects a mutation strategy at each generation.
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3 DE-DDQN
When integrated with DE as an AOS method, DDQN is adapted

as follows. The environment of DDQN becomes the DE algorithm

performing an optimization run for a maximum of FEmax
function

evaluations. A state st is a collection of features that measure static

or run time features of the problem being solved or of DE at step t
(function evaluation or generation counter). The actions that DDQN

may take are the set of mutation strategies available (Sect. 2.1), and

at is the strategy selected and applied at step t . Once a mutation

strategy is applied, a reward function returns the estimated benefit

(reward) rt of applying action at , and the DE run reaches a new

state, st+1. We refer to the tuple ⟨st , at , rt , st+1⟩ as an observation.
Our proposed DE-DDQN algorithm operates in two phases. In

the first training phase, the two deep neural networks of DDQN

are trained on observations by running the DE-DDQN algorithm

multiple times on several benchmark functions. In a second on-

line (or deployment) phase, the trained DDQN is used to select

which mutation strategy should be applied at each generation of

DE when tackling unseen (or test) problems not considered during

the training phase. We describe these two phases in detail next.

3.1 Training phase
In the training phase, DDQN uses two deep neural networks (NNs),

namely primary NN and target NN. The primary NN predicts the Q-

valuesQ(st ,a;θ ) that are used to select an action a given state st at

step t , while the target NN estimates the target Q-values Q̂(st ,a; ˆθ )

after the action a has been applied, where θ and
ˆθ are the weights

of the primary and target NNs, respectively, st is the state vector
of DE, and a is a mutation strategy.

The goal of the training phase is to train the primary NN of

DDQN so that it learns to approximate the target Q̂ function. The

training data is a memory of observations that is collected by run-

ning DE-DDQN several times on training benchmark functions.

Training the primary NN involves finding its weights θ through

gradient optimization.

The training process of DE-DDQN is shown in Algorithm 1.

Training starts by running DE with random selection of mutation

strategy for a fixed number of steps (warm-up size) that generates
observations to populate a memory of capacity N , which can be

different from the warm-up size (line 2). This memory stores a fixed

number of N recent observations, old ones are removed as new

ones are added. Once the warm-up phase is over, DE is executed

M times, and each run is stopped after FEmax
function evaluations

or the known optimum of the training problem is reached (line 7).

For each solution in the population, the ϵ-greedy policy is used to

select mutation strategy, i.e., with ϵ probability a random mutation

is selected, otherwise the mutation strategy with maximum Q-

value is selected. Using the current DE state st , the primary NN is

responsible for generating a Q-value per possible mutation strategy

(line 12). The use of a ϵ-greedy policy forces the primary NN to

explore mutation strategies that may be currently predicted less

optimal. The selected mutation strategy is applied (line 13) and a

new state st+1 is achieved (line 14). A reward value rt is computed

by measuring the performance progress made at this step.

To prevent the primary NN from only learning about the immedi-

ate state of this DE run, randomly drawmini batches of observations

Algorithm 1 DE-DDQN training algorithm

1: Initialise parameter values of DE (F , NP , CR)
2: Run DE with random selection of mutation strategy to initialise memory to

capacity N
3: Initialise Q-value for each action by setting random weights θ of primary

NN

4: Initialise target Q-value Q̂ for each action by setting weights
ˆθ = θ of target

NN

5: for run 1, . . .M do
6: t = 0

7: while t < F Emax
or optimum is reached do

8: for i = 1, . . . , NP do
9: if rand(0, 1) < ϵ then
10: Randomly select a mutation strategy at
11: else
12: Select at = argmaxa Q (st , a; θ )
13: Generate trial vector ®ui for parent ®xi using mutation at
14: Evaluate trial vector and keep the best among ®xi and ®ui
15: Store observation (st , at , rt , st+1) in memory

16: Sample random mini batch of observations from memory

17: if run terminates then
18: r target = rt
19: else
20: ât+1 = argmaxa Q (st+1, a; θ )
21: r target = rt + γ Q̂ (st+1, ât+1; ˆθ )
22: Perform a gradient descent step on (r target − Q (sj , aj ; θ ))2 with

respect to θ
23: Every C steps set

ˆθ = θ
24: t = t + 1
25: return θ (weights of primary NN)

(line 16) from memory to perform a step of gradient optimization.

Training the primary NN with the randomly drawn observations

helps to robustly learn to perform well in the task.

The primary NN is used to predict the next mutation strategy

ât+1 (line 20) and its reward (line 21), without actually applying the
mutation. A target reward value r target is used to train the primary

NN, i.e., finding the weights θ that minimise the loss function

(r target − Q(sj ,aj ;θ ))
2
(line 22). If the run terminates, i.e., if the

budget assigned to the problem is finished, r target is the same as

the reward rt . Otherwise, r
target

is estimated (line 21) as a linear

combination of the current reward rt and the predicted future

reward γQ̂(st+1, ât+1), where Q̂ is the (predicted) target Q-value

and γ is the discount factor that makes the training focus more on

immediate results compared to future rewards.

Finally, the primary and target NNs are synchronised periodically

by copying the weights θ from the primary NN to the
ˆθ of the target

NN every fixed number of C training steps (line 23). That is, the

target NN uses an older set of weights to compute the target Q-value,

which keeps the target value r target from changing too quickly. At

every step of training (line 22), the Q-values generated by the

primary NN shift. If we are using a constantly shifting set of values

to calculate r target (line 21) and adjust the NN weights (line 22),

then the target value estimations can easily become unstable by

falling into feedback loops between r target and the (target) Q-values
used to calculate r target. In order to mitigate that risk, the target NN

is used to generate target Q-values (Q̂) that are used to compute

r target, which is used in the loss function for training the primary

NN. While the primary NN is trained, the weights of the target NN

are fixed.
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Algorithm 2 DE-DDQN testing algorithm

1: Initialise parameter values of DE (F , NP , CR)
2: Initialise and evaluate fitness of each ®xi in the population

3: Initialise Q(·) for each mutation strategy with fixed weights θ
4: t = 0

5: while t < FEmax do
6: for i = 1, . . . ,NP do
7: Select at = argmaxa Q(st ,a;θ )
8: Generate trial vector ®ui for parent ®xi using operator at
9: Evaluate trial vector ®ui
10: Replace ®xi with the best among parent and trial vector

11: t = t + 1
12: return best solution found

3.2 Online phase
Once the learning is finished, the weights of the primary NN are

frozen. In the testing phase, the mutation strategy is selected online

during an optimization run on an unseen function. The online AOS

with DE is shown in Algorithm 2. Since the weights of the NN

are not updated in this phase, we do not maintain a memory of

observations or compute rewards. As a new state is observed st , the
Q-values per mutation strategy are calculated and a new mutation

strategy is chosen according to the greedy policy (line 7).

4 STATE FEATURES AND REWARD
In this section we describe the new state features and reward defi-

nitions explored for the proposed DE-DDQN method.

4.1 State representation
The state representation needs to provide sufficient information so

that the NN can decide which action is more suitable at the cur-

rent step. We propose a state vector consisting of various features

capturing properties of the landscape and the history of operator

performance. Each feature is normalised to the range [0, 1] by design

in order to abstract absolute values specific to particular problems

and help generalisation. Features are summarised in Table 1.

Our state needs to encode information about how the current

solutions in the population are distributed in the decision space

and their differences in fitness values. The fitness of current parent

f (®xi ) is given to the NN as a first state feature. The next feature

is the mean of the fitness of the current population. The first two

features in the state are normalised by the difference of worst and

best seen so far solution. The third feature calculates the standard

deviation of the population fitness values. Feature 4 measures the re-

maining budget of function evaluations. Feature 5 is the dimension

of the function being solved. The training set includes benchmark

functions with different dimensions in the hope that the NN are

able to generalise to functions of any dimension within the train-

ing range. Feature 6, stagnation count, calculates the number of

function evaluations since the last improvement of the best fitness

found for this run (normalised by FEmax
).

The next set of feature values describe the relation between the

current parent and the six solutions used by the various mutation

strategies, i.e., the five random indexes (r1, r2, r3, r4, r5) and the

best parent in the population (®x
best

). Features 7–12 measure the Eu-

clidean distance in decision space between the current parent ®xi and
the six solutions. These six euclidean distances help the NN learn

to select the strategy that best combines these solutions. Features

13–18 use the same six solutions to calculate the fitness difference

w.r.t. f (®xi ). Feature 19 measures the normalised Euclidean distance

in decision space between ®xi and the best solution seen so far. We

use distances instead of positions to make the state representation

independent of the dimensionality of the solution space.

Describing the current population is not sufficient to select

the best strategy. Reinforcement learning requires the state to be

Markov, i.e., to include all necessary information for selecting an

action. To this end, we enhance the state with features about the run

time history. Using historical information has shown to be useful

in our previous work [23]. In addition to the remaining budget and

the stagnation counter described above, we also store four metric

values OMm (д,k, op) after the application of op at generation д:

(1) OM1(д,k, op) = f (®xi ) − f (®ui ), that is, the k-th fitness im-

provement of offspring ®ui over parent ®xi ;
(2) OM2(д,k, op), the k-th fitness improvement of offspring over

®x
best

, the best parent in the current population;

(3) OM3(д,k, op), the k-th fitness improvement of offspring over

®x
bsf

, the best so far solution; and

(4) OM4(д,k, op), the k-th fitness improvement of offspring over

the median fitness of the parent population.

For each OMm , the total number of fitness improvements (successes)
is given by N succ

m (д, op), that is, the index k is always 1 ≤ k ≤

N succ

m (д, op). The counter N tot(д, op) gives the total number of ap-

plications of op at generation д. We store this historical information

for the last gen number of generations.

With the information above, we compute the sum of success

rates over the last gen generations, where each success rate is the

number of successful applications of operator op, i.e., mutation

strategy, in generation д that improve metric OMm divided by the

total number of applications of op in the same generation. For each

metric OMm , the values for an operator are normalised by the sum

of all values of all operators. A different success rate is calculated for

each combination of OMm (m ∈ {1, 2, 3, 4}) and op (four mutation

strategies) resulting in features 20–35.

We also compute the sum of fitness improvements for each OMm
divided by the total number of applications of op over the last gen
generations (features 36–51). Features 52–67 are defined in terms

of best fitness improvement of a mutation strategy op according

to metric OMm over a given generation д, that is, OMbest

m (д, op) =
max

N succ

m (д,op)
k OMm (д,k, op). In this case, we calculate the relative

difference in best improvement of the last generationwith respect to

the previous one, divided by the difference in number of applications

between the last two generations (gen and gen − 1). Any zero value

in the denominator is ignored. The sum of best improvement seen

for combination of operator and metric is given as features 68–83.

Features 84-99 are calculated by maintaining a fixed size window

W where each element is a tuple of the fourmetric valuesOMm ,m ∈

{1, 2, 3, 4} and f (®ui ) resulting from the application of a mutation

strategy to ®xi that generates ®ui . Initially the window is filled with

OMm values as new improved offsprings are produced. Once it is

full, new elements replace existing ones generated by that mutation
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Table 1: State features

Index Feature Notes

1

f ( ®xi ) − fbsf
fwsf − fbsf

®xi denotes the i-th solution of the population and f ( ®xi ) denotes its fitness; fbsf and fwsf denote
the best-so-far and worst-so-far fitness values found up to this step within a single run

2

∑NP
j=1

f ( ®x j )
NP − fbsf

fwsf − fbsf
NP is the population size

3

stdj=1, . . .,NP (f ( ®x j ))
std

max

std(·) calculates the standard deviation and std
max

is the value when NP/2 solutions have

fitness fwsf and the other half have fitness fbsf

4

F Emax − t
F Emax

F Emax
is the maximum number of function evaluations per run, and F Emax − t gives the

remaining number of evaluations at step t

5

dimf

dimmax

dimf is the dimension of the benchmark function f being optimised, and dimmax
is the maxi-

mum dimension among all training functions

6

stagcount
F Emax

stagcount is the stagnation counter, i.e., the number of function evaluations (steps) without

improving fbsf

7-11

dist( ®xi − ®x j )
distmax

, ∀j ∈ {r1, r2, r3, r4, r5 }
dist(·) is the Euclidean distance between two solutions; distmax

is the maximum distance pos-

sible, calculated between the lower and upper bounds of the decision space; {r1, r2, r3, r4, r5 }
are random indexes

12

dist( ®xi − ®xbest)
distmax

®xbest is the best parent in the current population

13-17

f ( ®xi ) − f ( ®x j )
fwsf − fbsf

, ∀j ∈ {r1, r2, r3, r4, r5 }

18

f ( ®xi ) − f ( ®xbest)
fwsf − fbsf

19

dist( ®xi − ®xbsf)
distmax

®xbsf denotes the solution with fitness fbsf

20-35

∑gen
д=1

N succ

m (д, op)
N tot(д, op)

For each op andm ∈ {1, 2, 3, 4} and normalised over all operators; gen is the number of

recent generations recorded; N succ

m (д, op) and N tot(д, op) are successful and total

applications of op according to OMm at generation д
36-51

∑gen
д=1

∑N succ

m (д,op)
k=1 OMm (д, k, op)∑gen
д=1 N

tot(д, op)

52-67

OMbest

m (gen, op) − OMbest

m (gen − 1, op)

OMbest

m (gen − 1, op) · |N tot(gen, op) − N tot(gen − 1, op) |
For each op andm ∈ {1, 2, 3, 4} and normalised over all operators; OMbest

m (д, op) is the maxi-

mum value of OMm (д, k, op)

68-83

∑gen
д=1 OM

best

m (д, op) For each op andm ∈ {1, 2, 3, 4} and normalised over all operators

84-99

∑W
w=1 OMm (w, op)

For each op andm ∈ {1, 2, 3, 4} and normalised over all operators; OMm (w, op) is the w -th

value in the window generated by op

strategy according to the First-In First-Out (FIFO) rule. If there is

no element produced by that operator in the window, the element

with the worst (highest) f (®ui ) is replaced. Each feature is the sum

of OMm values within the window for eachm and each operator.

The difference between features extracted from recent generations

(68-83) and from the fixed-size window (84-99) is that the window

captures the best solutions for each operator, and the number of

solutions present per operator vary. In a sense, solutions compete to

be part of the window. Whereas when computing features from the

last gen generations, all successful improvements per generation

are captured and there is no competition among elements. As the

most recent history is the most useful, we use small values for last

gen = 10 generations and window sizeW = 50.

4.2 Reward definitions
While we only know the true reward of a sequence of actions

after a full run of DE is completed, i.e., the best fitness found, such

sparse rewards provide a very weak signal and can slow down

training. Instead, we calculate rewards after every action has been

taken, i.e., a new offspring ®ui is produced from parent ®xi . In this

paper, we explore three reward definitions, each one using different

information related to fitness improvement:

R1 = max{ f (®xi ) − f (®ui ), 0} R2 =


10 if f (®ui ) < f

bsf
)

1 else if f (®ui ) < f (®xi )

0 otherwise

R3 = max{
f ( ®xi )−f ( ®ui )
f ( ®ui )−foptimum

, 0}

R1 is the fitness difference of offspring from parent when an im-

provement is seen. This definition has been used commonly in

literature for parameter control [4, 20, 22]. R2 assigns a higher re-

ward to an improvement over the best so far solution than to an

improvement over the parent. Finally, R3 is a variant of R1 rela-

tive to the difference between the offspring fitness and the optimal

fitness, i.e., maximise the fitness difference between parent and
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Table 2: Hyperparameter values of DE-DDQN

Training and online parameters Parameter value

Scaling factor (F ) 0.5

Crossover rate (CR) 1.0

Population size (NP ) 100

FEmax
per function 10

4
function evaluations

Max. generations (gen) 10

Window size (W ) 50

Type of neural network Multi layer perceptron

Hidden layers 4

Hidden nodes 100 per hidden layer

Activation function Rectified linear (Relu) [19]

Batch size 64

Training only parameters Parameter value

Training policy ϵ-greedy ( ϵ = 0.1)

Discount factor (γ ) 0.99

Target network synchronised (C) every 1e3 steps
Observation memory capacity 10

5

Warm-up size 10
4

NN training algorithm Adam (learning rate: 10
−4
)

Online phase parameters Parameter value

Online policy Greedy

offspring and minimise fitness difference between offspring and op-

timal solution. This definition can only be used when the optimum

values of the functions used for training are known in advance.

5 EXPERIMENTAL DESIGN
In our implementation of DE-DDQN, the primary and target NNs

are multi-layer perceptrons. We integrate the three reward defi-

nitions R1, R2 and R3 into DE-DDQN and the resulting methods

are denoted DE-DDQN1, DE-DDQN2 and DE-DDQN3, respectively.

For each of these methods, we trained four NNs using batch sizes 64

or 128 and 3 or 4 hidden layers, and we picked the best combination

of batch size and number of hidden layers according to the total

accumulated reward during the training phase. In all cases, the most

successful configuration was batch size 64 with 4 hidden layers.

Results of other configurations are not shown in the paper.

The rest of the parameters are not tuned but set to typical values.

In the training phase, we applied ϵ-greedy policy with ϵ = 10% of

the actions selected randomly and the rest according to the highest

Q-value. In the warm-up phase during training, we set the capacity

of the memory of observations larger than the warm-up size so

that 90% of the memory is filled up with observations from random

actions and the rest with actions selected by the NN. The gradient

descent algorithm used to update the weights of the NN during

training is Adam [15]. Table 2 shows all hyperparameter values.

We compared the three proposed DE-DDQN variants with ten

baselines: random selection of mutation strategies (Random), four

different fixed-strategy DEs (DE1-DE4), PM-AdapSS (AdapSS) [8],

F-AUC (FAUC) [9], RecPM-AOS (RecPM) [23] and the two winners

of CEC2005 competition, which are both variants of CMAES: LR-

CMAES (LR) [2] and IPOP-CMAES (IPOP) [3]. Among all these

alternatives, AdapSS, FAUC, RecPM are AOS methods that were

proposed to adaptively select mutation strategies. The parameters

of these AOS methods were previously tuned with the help of

an offline configurator irace [23] and the tuned hyperparameter

values (parameters of AOS and not DE) have been used in the

experiments. The first eight baselines involve the DE algorithm

with the following parameter values: population size (NP = 100),

scaling factor (F = 0.5) and crossover rate (CR = 1.0). This choice

for parameter F has shown good results [6]. CR as 1.0 has been

chosen to see the full potential of mutation strategies to evolve each

dimension of each parent. The results of LR and IPOP are taken

from their original papers from the cec2005 competition for the

comparison.

5.1 Training and testing
In order to force the NN to learn a general policy, we train on

different classes of functions. From the 25 functions of the cec2005

benchmark suite [26], we excluded non-deterministic functions

and functions without bounds (functions F4, F7, F17 and F25). The
remaining 21 functions can be divided into four classes: unimodal

functions F1 – F5; basic multimodal functions F6 – F12; expanded
multimodal functions F13 – F14; and hybrid composition functions

F15 – F24. We split these 21 functions into roughly 75% training

and 25% testing sets, that is, 16 functions (F1, F2, F5, F6, F8, F10–
F15, F19–F22 and F24) are assigned to the training set and the rest

(F3, F9, F16, F18 and F23) are assigned to the test set. According

to the above classification, the training set contains at least two

functions from each class and the test set contains at least one

function from each class except for expanded multimodal functions,

as both functions of this class are included in the training set. For

each function, we consider both dimensions 10 and 30, giving a

total of 32 problems for training and 10 problems for testing.

During training, we cycle through the 32 training problems mul-

tiple times and keep track of the mean reward achieved in each

cycle. We overwrite the weights of the NN if the mean reward is

better than what we have observed in previous cycles. We found

this measure of progress was better than comparing rewards af-

ter individual runs, because different problems vary in difficulty

making rewards incomparable. After each cycle, the 32 problems

are shuffled before being used again. The mean reward stopped

improving after 1890 cycles (60480 problems, 6048× 10
5
FEs) which

indicated the convergence of the learning process.

Although the computational cost of the training phase is signifi-

cant compared to a single run of DE, this cost is incurred offline, i.e.,

one time on known benchmark functions before solving any unseen

function, and it can be significantly reduced by means of paralleli-

sation and GPUs. On the other hand, we conjecture that training on

even more data from different classes of functions should allow the

application of DE-DDQN to a larger range of unknown functions.

After training, the NN weights were saved and used for the

testing (online) phase.
1
For testing, each DE-DDQN variant was

independently run 25 times on each test problem and each run was

stopped when either absolute error difference from the optimum is

smaller than 10
−8

or 10
4
function evaluations are exhausted. Mean

1
The weights obtained after training are available on Github [24] together with the

source code, and can be used for testing on similar functions including expanded

multimodal. The code may be adapted to train or test using other benchmark suites

such as bbob with functions of up to dimension 50.
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Table 3: Mean (and standard deviation in parenthesis) of function error values obtained by 25 runs for each function on test
set. Former five are dimension 10 and last five are dimension 30. We refer DE-DDQN as DDQN. Bold entry is the minimum
mean error found by any method for each function.

Function Random DE1 DE2 DE3 DE4 AdapSS FAUC RecPM LR IPOP DDQN1 DDQN2 DDQN3

F3-10
2.34e+8

(1.06e+8)

2.78e+8

(1.30e+8)

2.26e+8

(1.10e+8)

2.38e+8

(1.23e+8)

2.63e+8

(1.42e+8)

3.37e+4

(3.62e+5)

3.53e+5

(1.65e+4)

3.08e+4

(2.64e+4)

4.94e-9
(1.45e-9)

5.60e-9

(1.93e-9)

3.98e+3

(1.91e+3)

7.38 e+0

(3.59e0)

2.12e+1

(1.14e+1)

F9-10
1.20e+2

(1.32e+1)

1.18e+2

(1.20e+1)

1.22e+2

(1.88e+1)

1.16e+2

(1.44e+1)

1.22e+2

(1.71e+1)

4.10e+1

(6.36e+0)

4.36e+1

(5.99e+0)

3.79e+1

(6.33e+0)

8.60e+1

(3.84e+1)

6.21e+0
(2.10e+0)

4.19e+1

(6.21e+0)

3.68e+1

(4.64e+0)

3.86e+1

(7.66e+0)

F16-10
6.46e+2

(1.02e+2)

6.50e+2

(9.65e+1)

6.31e+2

(1.15e+2)

5.91e+2

(1.07e+2)

6.33e+2

(9.97e+1)

1.90e+2

(2.21e+1)

2.05e+2

(1.41e+1)

1.89e+2

(1.25e+1)

1.49e+2

(8.01e+1)

1.11e+2
(1.66e+1)

1.93e+2

(1.24e+1)

1.79e+2

(2.05e+1)

1.88e+2

(1.41e+1)

F18-10
1.33e+3

(1.16e+2)

1.36e+3

(8.81e+1)

1.39e+3

(1.11e+2)

1.36e+3

(1.09e+2)

1.36e+3

(9.67e+1)

6.13e+2

(1.67e+2)

6.94e+2

(1.93e+2)

6.48e+2

(1.82e+2)

8.40e+2

(2.17e+2)

6.02e+2

(2.76e+2)

5.20e+2
(1.93e+2)

5.81e+2

(2.47e+2)

5.98e+2

(2.61e+2)

F23-10
1.49e+3

(5.16e+1)

1.51e+3

(6.71e+1)

1.51e+3

(6.03e+1)

1.51e+3

(5.58e+1)

1.49e+3

(4.97e+1)

6.66e+2

(1.99e+2)

7.73e+2

(2.05e+2)

6.37e+2

(1.23e+2)

1.22e+3

(5.16e+2)

9.49e+2

(3.52e+2)

6.18e+2
(1.40e+2)

6.56e+2

(1.57e+2)

6.90e+2

(1.35e+2)

F3-30
2.48e+9

(6.60e+8)

2.68e+9

(7.84e+8)

2.50e+9

(9.04e+8)

2.65e+9

(6.69e+8)

2.51e+9

(8.22e+8)

1.52e+7

(5.50e+7)

6.44e+7

(5.88e+6)

1.31e+7

(6.84e+6)

1.28e+6
(7.13e+5)

6.11e+6

(3.79e+6)

1.52e+7

(9.07e+6)

3.06e+6

(2.54e+6)

5.72e+6

(1.30e+7)

F9-30
5.33e+2

(3.09e+1)

5.27e+2

(3.40e+1)

5.42e+2

(3.73e+1)

5.19e+2

(4.53e+1)

5.41e+2

(3.43e+1)

2.54e+2

(2.69e+1)

2.88e+2

(1.72e+1)

2.53e+2

(1.26e+1)

4.19e+2

(1.02e+2)

4.78e+1
(1.15e+1)

2.73e+2

(1.97e+1)

2.39e+2

(1.52e+1)

2.73e+2

(2.24e+1)

F16-30
1.19e+3

(1.36e+2)

1.18e+3

(1.72e+2)

1.18e+3

(1.16e+2)

1.21e+3

(1.35e+2)

1.20e+3

(1.63e+2)

3.11e+2

(6.26e+1)

3.48e+2

(5.27e+1)

2.97e+2

(3.00e+1)

2.52e+2

(2.08e+2)

1.96e+2
(1.45e+2)

3.18e+2

(4.22e+1)

3.74e+2

(9.03e+1)

3.39e+2

(8.41e+1)

F18-30
1.41e+3

(5.70e+1)

1.43e+3

(4.70e+1)

1.41e+3

(6.47e+1)

1.42e+3

(4.59e+1)

1.42e+3

(5.54e+1)

9.65e+2

(5.59e+1)

1.02e+3

(2.37e+1)

9.71e+2

(2.31e+1)

9.64e+2

(1.46e+2)

9.08e+2
(2.76e+0)

1.04e+3

(2.27e+1)

9.45e+2

(1.42e+1)

9.48e+2

(3.25e+1)

F23-30
1.58e+3

(4.64e+1)

1.57e+3

(4.05e+1)

1.55e+3

(4.51e+1)

1.57e+3

(4.14e+1)

1.57e+3

(5.15e+1)

9.43e+2

(1.40e+2)

1.10e+3

(1.01e+2)

9.67e+2

(1.30e+2)

7.51e+2

(3.30e+2)

6.92e+2
(2.38e+2)

1.17e+3

(6.30e+1)

9.74e+2

(1.69e+2)

9.64e+2

(1.70e+2)

Table 4: Average ranking of all methods.

Algo IPOP DDQN2 DDQN3 RecPM LR AdapSS DDQN1 FAUC Random DE3 DE2 DE4 DE1

Rank 2.3 3.3 4.1 4.4 4.4 4.9 5.4 7.2 10.5 10.8 10.8 11.4 11.5

and standard deviation of the final error values achieved by each

of the 25 runs are reported in Table 3.

5.2 Discussion of results
The average rankings of each method among the 10 test problem

instances are shown in Table 4. The differences among the 13 al-

gorithms are significant (p < .01) according to the non-parametric

Friedman test. We conducted a post-hoc analysis using the best

performing method (DE-DDQN2) among the newly proposed ones

as the control method for pairwise comparisons with the other

methods. The p-values adjusted for multiple comparisons [16] are

shown in Table 5. The differences between DE-DDQN2 and the five

baselines, random selection of operators and single strategy DEs

(DE1-DE4), are significant while differences with other methods

are not. The analysis makes clear that the proposed method learns

to adaptively select the strategy at different stages of a DE run.

While differences between the three reward definitions are not

statistically significant, the rankings provide some evidence that R2

performs better than the other two definitions. R2 being a simple

definition assigning fixed reward values does not get affected by the

function range, whereas R1 and R3 involving raw functions values

may mislead the NN when dealing with functions with different

fitness ranges. R2 assigns ten times more reward when offspring

improves over the best so far solution than when it improves over

its parent. Thus, DE-DDQN2 may learn to generate offspring that

not only tend to improve over the parent but also improve the best

fitness seen so far. On the contrary, R1 considers the improvement

of offspring over parent only and is less informative than R3, which

considers improvement over parent and optimum value. The im-

provement can be small or large when function values with different

ranges is considered. As a result, R1 and R3 become less informa-

tive about choosing operators that will solve the problem within

the given number of function evaluations. Although R3 scales fit-

ness improvement with distance from the optimum which partially

mitigates the effect of different ranges among functions, inconsis-

tent ranges are still problematic. The R2 definition encourages the

generation of better offsprings than the best so far candidate and

it is invariant to differences in function ranges. Comparing with

other methods proposed in the literature shows that DE variants

with a suitable operator selection strategy can perform similarly

to CMAES variants which are known to be the best performing

methods for this class of problems.

To further analyze the difference between DE-DDQN and other

AOS methods we provide boxplots of the results of 25 runs of DE-

DDQN2, PM-AdapSS and RecPM-AOS on each function (Fig. 1).

We observe that the overall minimum function value found across

the 25 runs is lower for DE-DDQN2 in all problems except F9-10
and F16-30. As seen in box plots, for F18 and F23 with dimension

10, DE-DDQN2 often gets stuck at local optima, but manages to

find a better overall solution compared to the other methods. Other

methods find high variance solutions in these cases. At the same

time, the median values of solutions found are better for six out of

ten problems. This observation suggests that incorporating restart

strategies similar to those used by IPOP-CMAES can be particularly
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Table 5: Post-hoc (Li) using DE-DDQN2 as control method.

Comparison Statistic Adjusted
p-value Result

DDQN2 vs DE1 4.70819 0.00001 H0 is rejected

DDQN2 vs DE4 4.65077 0.00008 H0 is rejected

DDQN2 vs DE2 4.30627 0.00005 H0 is rejected

DDQN2 vs DE3 4.30627 0.00005 H0 is rejected

DDQN2 vs Random 4.13402 0.00010 H0 is rejected

DDQN2 vs FAUC 2.23926 0.06630 H0 is not rejected

DDQN2 vs DDQN1 1.20576 0.39166 H0 is not rejected

DDQN2 vs AdapSS 0.91867 0.50299 H0 is not rejected

DDQN2 vs Rec-PM 0.63159 0.59848 H0 is not rejected

DDQN2 vs LR 0.63159 0.59848 H0 is not rejected

DDQN2 vs IPOP 0.57417 0.61515 H0 is not rejected

DDQN2 vs DDQN3 0.45934 0.64599 H0 is not rejected

useful for DE-DDQN and give us a direction for future work. DE-

DDQN2 performs well consistently for the unimodal F3 with both

10 and 30 dimensions, while the other AOS methods find relatively

higher error solutions with high variance. We interpret this as an

indication that DE-DDQN can identify this type of problem and

apply a more suitable AOS strategy than Rec-PM and PM-AdapSS.

On the other hand, we see that for F16-30 and F23-30, DE-DDQN2
exhibits higher variance of solutions, which suggests that higher

dimensional multimodal functions often confuse the NN, leading it

to suboptimal behaviour.

6 CONCLUSION
WepresentedDE-DDQN, aDeep-RL-based operator selectionmethod

that learns to select online the mutation strategies of DE. DE-DDQN

has two phases, offline training and online evaluation phase. Dur-

ing training we collected data from DE runs using a reward metric

to assess the performance of the selected mutation action and 99

features to evaluate the state of the DE. Features and reward values

are used to optimise the weights of a neural network to learn the

most rewarding mutation given the DE state. The weights learned

during training are then used during the online phase to predict the

mutation strategy to use when solving a new problem. Experiments

were run using 21 functions from cec2005 benchmark suite, each

function was evaluated with dimensions 10 and 30. A set of 32

functions was used for training and we run the online phase on a

different test set of 10 functions.

All three proposed methods outperform all the non-AOS base-

lines based on mean error seen in 25 runs on test functions. This

shows that the proposed methods can learn to select the right strat-

egy at different stages of the algorithm. Our statistical analysis

suggests that differences between the best proposed method and

the AOS methods from the literature are not significant, but the

best performing version of our model, DE-DDQN2, was ranked

overall second after IPOP-CMAES. The R2 reward function, which

assigns fixed reward values when better solutions are found, is

more helpful for learning an AOS strategy.

For future work, we want to explore applications of Deep RL for

learning to control more parameters of evolutionary algorithms,

F3-10 F3-30

F9-10 F9-30

F16-10 F16-30

F18-10 F18-30

F23-10 F23-30

Figure 1: Function error values obtained by 25 runs of DE-
DDQN2, RecPM-AOS and PM-AdapSS for each function on
test set with dimension 10 and 30.

including combinations of discrete and continuous parameters. We

also expect that an extensive tuning of state features and hyperpa-

rameter values will further improve performance of the method.
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