
Automatic Surrogate Modelling Technique Selection based on
Features of Optimization Problems

Bhupinder Singh Saini
University of Jyvaskyla

Faculty of Information Technology,
P.O. Box 35 (Agora)

FI-40014 University of Jyvaskyla,
Finland

bhupinder.s.saini@jyu.fi

Manuel López-Ibáñez
Alliance Manchester Business School,

University of Manchester, UK
manuel.lopez-ibanez@manchester.ac.uk

Kaisa Miettinen
University of Jyvaskyla

Faculty of Information Technology,
P.O. Box 35 (Agora)

FI-40014 University of Jyvaskyla,
Finland

kaisa.miettinen@jyu.fi

ABSTRACT
A typical scenario when solving industrial single or multiobjective
optimization problems is that no explicit formulation of the prob-
lem is available. Instead, a dataset containing vectors of decision
variables together with their objective function value(s) is given and
a surrogate model (or metamodel) is build from the data and used
for optimization and decision-making. This data-driven optimiza-
tion process strongly depends on the ability of the surrogate model
to predict the objective value of decision variables not present in
the original dataset. Therefore, the choice of surrogate modelling
technique is crucial. While many surrogate modelling techniques
have been discussed in the literature, there is no standard procedure
that will select the best technique for a given problem.

In this work, we propose the automatic selection of a surrogate
modelling technique based on exploratory landscape features of the
optimization problem that underlies the given dataset. The overall
idea is to learn offline from a large pool of benchmark problems, on
which we can evaluate a large number of surrogate modelling tech-
niques. When given a new dataset, features are used to select the
most appropriate surrogate modelling technique. The preliminary
experiments reported here suggest that the proposed automatic
selector is able to identify high-accuracy surrogate models as long
as an appropriate classifier is used for selection.

CCS CONCEPTS
• Computing methodologies → Supervised learning by re-
gression;

KEYWORDS
surrogate modelling, automatic algorithm selection, exploratory
landscape analysis
ACM Reference Format:
Bhupinder Singh Saini, Manuel López-Ibáñez, and Kaisa Miettinen. 2019.
Automatic Surrogate Modelling Technique Selection based on Features of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic
© 2019 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-6748-6/19/07. . . $15.00
https://doi.org/10.1145/3319619.3326890

Optimization Problems. In Genetic and Evolutionary Computation Confer-
ence Companion (GECCO ’19 Companion), July 13–17, 2019, Prague, Czech
Republic. ACM, New York, NY, USA, 8 pages.
https://doi.org/10.1145/3319619.3326890

1 INTRODUCTION
Increasingly, data is being used as the starting point of analysis of
problems and optimization. Alternatives, such as running simula-
tions or conducting physical experiments, may be computationally
expensive, financially expensive or both. Data, on the other hand,
can be analyzed cheaply and efficiently, while leading to equally
relevant insights. One of the ways to use data is to create meta-
models or surrogate models that try to replicate the behaviour of
the simulations or real-life phenomena. Creating these surrogate
models is comparatively cheap and the models can be used for de-
scriptive, predictive or prescriptive analysis of the problem. Using
surrogate models for prescriptive analysis, such as optimization of
the problem, is particularly beneficial as optimization may require
multiple calls to an expensive objective function, which can be re-
placed with a cheap surrogate model. However, accurate modelling
of data is important for such analysis.

In many papers, there is no reasoning behind the selection of
a surrogate modelling technique apart from the popularity of the
technique in the research community and the researcher’s famil-
iarity with it. In the absence of an evidence-based guide to select
a surrogate modelling technique, choices made based on experi-
ence or popularity may be far from optimal [2]. This may lead to
inaccurate analysis, which at best is a waste of time and resources
and, at worst, may lead to ill-informed decisions. A possible ap-
proach for selecting surrogate modelling techniques would be to
train a large number of techniques in the given dataset, which
may require considerable time and, in the worst case, overfit to
the particular dataset. Cross-validation approaches may somewhat
overcome this over-fitting. However, they require setting aside part
of the available data for validation of the models. Not only the vali-
dation data could otherwise have been used for training, leading
to a better modelling of the problem; but also a selection based
on cross-validation only makes use of the available dataset when
making a decision, without any knowledge about similar datasets
or optimization problems. Hence, a better selection approach is
desirable, which can help us choose a good surrogate modelling
technique for a problem instance, without sacrificing useful data,
while being computationally efficient.

https://doi.org/10.1145/3319619.3326890
https://doi.org/10.1145/3319619.3326890

GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic Bhupinder Singh Saini, Manuel López-Ibáñez, and Kaisa Miettinen

A similar problem is faced when choosing an optimization algo-
rithm to tackle an optimization problem, due to the large number of
algorithms available and the lack of precise guidelines for choosing
the most appropriate algorithm for a given problem. In the field
of automatic algorithm selection [10], an optimization algorithm
is selected for a given problem instance by computing features of
the problem instance that help to predict the performance of the
available algorithms. In particular, features generated using explo-
rative landscape analysis (ELA) have been used to automatically
select optimization algorithms for continuous black-box optimiza-
tion problems with promising results [6]. Similar techniques have
been applied to combinatorial optimization problems [13]. Similar
to the assumptions made by automatic algorithm selection methods,
we expect that there are classes of optimization problems for which
certain surrogate modelling techniques perform better than others.

Instead of selecting an optimization algorithm for a given opti-
mization problem, we propose here to select a surrogate modelling
technique for a given dataset by using classification techniques from
machine learning. Moreover, by assuming that the dataset origi-
nates from an underlying but unknown optimization problem, we
propose that the classifier learns from ELA features, among others.
Our working hypothesis is that, due to common properties of the
optimization problems underlying the datasets, ELA features may
give enough information to identify a good surrogate modelling
technique, if we can collect enough training data to characterize
new, i.e., unseen problems.

The classifier is trained on known optimization benchmark func-
tions from which it is easy to sample datasets with diverse features
and evaluate the accuracy of various surrogate modelling tech-
niques. The computational cost of this training phase may be large,
but it is incurred only once “offline”. When the automatic selection
system is applied to an unseen dataset, the system only has to com-
pute dataset features in order to select the appropriate surrogate
modelling technique to model the dataset.

In this paper, we evaluate the above proposal using a collection
of datasets generated from benchmark and real-world engineering
problems from the literature. We also compare the performance
of several classifiers when used as the selector of the proposed
system. Our preliminary results show that the proposed system is
able to select good surrogate modelling techniques for almost all
engineering problems.

The paper is structured as follows. Section 2 describes the general
idea of our proposal for automatic selection of surrogate modelling
techniques. In Section 3, we evaluate this proposal experimentally
on benchmark and real-world engineering problems by studying
a proof-of-concept system that automatically chooses among ten
surrogate modelling techniques. In addition, we compare the per-
formance of nine classifiers as the selection method used by our
automatic selection system. Finally, we summarise our conclusions
in Section 4 and point out ongoing and future work.

Generate data
from known

problems

Train a classifier to select
surrogate modelling

method based on features

Train various
surrogate models

Extract features
from data

Extract features
from data

Offline data to
be modelled

Selector
(Trained Classifier)

Predict a suitable
surrogate

modelling method

Training Phase Application Phase

Dataset of features and
errors of surrogate
modelling methods

Figure 1: Automatic selection of surrogate modelling tech-
niques based on optimization features.

2 AUTOMATIC SELECTION OF SURROGATE
MODELLING TECHNIQUES

We propose here to automatically select the most appropriate tech-
nique for building a surrogate model of a given optimization prob-
lem based on features that have been traditionally used for land-
scape analysis of optimization algorithms. Surrogate modelling
technique selection (SMTS) uses machine learning techniques to
learn and predict which surrogate modelling techniques would per-
form best on given data based on certain “features” of the dataset
rather than individual samples. In our SMTS framework, a classifier
that we will call a “selector” is trained on landscape features of
optimization problems and on the performance of various surro-
gate modelling techniques. Later, in an application phase, given
a dataset to be modelled from an underlying optimization prob-
lem, the trained selector will select just one surrogate modelling
technique based on features of the given data. By assuming a data-
driven context, the application phase is constrained to the data
already available and there is no possibility of generating new data
from the same underlying problem to evaluate the performance of
alternative surrogate modelling techniques.

An outline of the proposed automatic SMTS framework is shown
in Figure 1. There are two clearly delimited training and application
phases. The training phase proceeds as follows:

(1) Data generation: Training datasets are generated fromwell
known optimization problems. Each training dataset corre-
sponds to a sample of solutions and corresponding objective
function values. To ensure the applicability of the SMTS to

Automatic Surrogate Model Selector GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic

a wide range of real-life problems, the individual datasets
should differ not only in the characteristics of the problems,
e.g., number of decision variables, but also in the features
of the sampling: different numbers of samples, uniform vs.
non-uniform distributions of samples in the decision space,
presence of noise and/or missing data, etc.

(2) Surrogate model training: A previously chosen set of sur-
rogatemodelling techniques is trained on each dataset. These
techniques will form the choices available to the selector.
Then, the accuracy of each surrogate model is evaluated by
using a sample of solutions and objectives values from the
same problem but different from those used for training, and
calculating its R2 coefficient.

(3) Feature calculation: Independently of the training of each
surrogate model, we also calculate a relatively large number
of features for each training dataset that hopefully help to
characterize the landscape of the optimization problem that
underlies the dataset.

(4) Training of the selector: The features of each training
dataset together with the R2 value of each surrogate mod-
elling technique on the problem forms the training data for
a classifier that aims to predict the best surrogate modelling
technique (i.e., with the highest R2) for each dataset based
on its features.

(5) Custom cost function: We have observed that there are
large differences among various surrogate modelling tech-
niques and, often, the second-best technique is almost as
good as the best one, while both of them are significantly
better than the worst one. In other words, when failing to se-
lect the best surrogate modelling technique, selecting instead
the second-best is much better than selecting the worst one.
Therefore, we use the following cost function to quantify the
performance of the selector relative to the best-performing
surrogate modelling technique:

Loss(Datasetj) = max
k ∈K

{R2k, j } − R2selected, j (1)

Cost =

∑J
j=1 Loss(Datasetj)

J
, (2)

where
Datasetj = Dataset with index j
R2i, j = R2 value of surrogate modelling technique

(SMT) i applied to dataset j
R2selected, j = R2 value of the SMT selected by the selector

for dataset j
K = Total number of SMTs available for selection
J = Total number of datasets included in cost

evaluation.

The best-performing surrogate modelling technique on a
particular dataset produces the maximum R2 value and, if
selected, it results in a loss value of zero. Selecting any other
surrogate modelling technique will produce a higher loss
value. The cost metric aggregates the loss values over multi-
ple datasets.

Once the selector has been trained using the training datasets, it
may be used to select a surrogate modelling technique on unseen

data. In this application phase, we have access to some features of
the sampling, such as the number of samples, presence of noise or
missing data, etc. Since we assume that the unseen data arises from
an unknown optimization problem, we can also calculate landscape
features of the underlying optimization problem from the data avail-
able. However, we do not have the possibility of creating new data
and we do not have access to the underlying optimization problem.
Moreover, we do not attempt to train each surrogate modelling
technique on the available data. Instead, we use the selector trained
in the previous phase to select one surrogate modelling technique
according to the features that can be computed on the given sam-
ple data. The selected surrogate modelling technique will then be
trained on the available data and used for analysis, prediction and,
possibly, for data-driven optimization.

3 EXPERIMENTAL STUDY
We evaluate here a proof-of-concept of our proposed automatic
selection of surrogate modelling techniques based on features of op-
timization problems. The first goal of our experimental analysis is
to understand whether there are sufficient differences among stan-
dard surrogate modelling techniques to justify the computational
cost of training a selector. To answer this question, we consider
10 popular surrogate modelling techniques (Table 2) and evaluate
them on datasets generated from standard numerical optimization
benchmark functions.

A second question is whether training a selector in the manner
proposed above can identify a good surrogate modelling technique
for a given dataset, which is at least better than a random selection.
Of course, an important component of the proposed selector is the
classification method used for selection. Hence, we evaluate here
nine different classifiers (Table 3). Moreover, a key characteristic of
our proposal is that, given an unseen dataset, we wish to select a
surrogate modelling technique based on features of the underlying
optimization problem extracted from the available dataset, without
training any of the surrogate models, not even on a sub-sample of
the dataset. The latter could in principle help to inform the selection,
but it may obscure the contribution of the landscape features, which
is what we are testing here.

Finally, we also want to assess whether a selector trained on
data from benchmark functions is better than chance in identifying
a good surrogate modelling technique for real-world engineering
problems.

3.1 Experimental Setup
Benchmark Datasets (Training). For the training phase, we gen-
erate datasets from well-known benchmark problems. In particular,
we consider separately single functions from several multiobjec-
tive benchmark test suites (DTLZ [3], WFG [4] and ZDT [14]). The
number of decision variables, i.e., the dimensionality of the decision
space, was varied between 10, 20 and 30 for the DTLZ and WFG
sets, and the recommended dimensionality for ZDT (30 in most
cases).

Data from real-life problems may have characteristics that are
not usually found in uniformly distributed datasets generated from
benchmark functions. These may include skewed distributions of
samples in the data, presence of noise, and chunks of the decision

GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic Bhupinder Singh Saini, Manuel López-Ibáñez, and Kaisa Miettinen

Table 1: Characteristics of datasets generated from benchmark problems.

Benchmark problem family: DTLZ functions {1–5}, ZDT funcs. {1–9}, WFG funcs. {1–4, 6}

Decision variables: {10, 20, 30} (ZDT: only recommended values)

Number of samples: {100, 150, 200, 250, 300, 350, 400, 500, 600, 700, 800, 900, 1000, 1200, 1500, 2000}

Distribution of samples (decision space): {Uniform, Normal with µ = 0.5, sd = 0.25}

Missing data: {None, Missing}

space may be missing from the data. Datasets may also have too
few samples for a surrogate modelling technique to work correctly,
or some surrogate modelling techniques may benefit more than
others from having a large number of samples. We account for
these characteristics by sampling several training datasets from
each benchmark problem. In particular, we sample datasets with
various sizes ranging from 100 to 2 000 solutions. Samples are also
generated either from a uniform random distribution in the decision
space or they are normally distributed with a mean equal to 0.5 and
standard deviation equal to 0.25 for each decision variable. Some
datasets have chunks of data missing, which is done by creating the
dataset as previously described, and then removing data which lie
within a rectangular hyperbox one-tenth of the size of the decision
space. Table 1 summarizes all the variations of training datasets
included in our training phase.

Engineering Datasets (Validation). For evaluating the perfor-
mance in the application phase, we generated datasets from several
box-constrained engineering problems from the literature:

(1) Kursawe test function [7]
(2) Four bar plan truss problem [1]
(3) Gear train design [11]
(4) Pressure vessel design [11]
(5) Speed reducer problem [12]
(6) Welded beam design problem [11]
(7) Unconstrained function problem 1 [8]

In the case of multiobjective optimization problems, each objective
function was treated as a separate problem, leading to a total of 12
problems. For each problem, we sample several datasets of sizes
{50, 100, 150, 200, 400, 700, 1000}, sampling from the decision space
uniformly at random. This resulted in a total of 84 datasets created
from the engineering problems. The number of decision variables
ranges from 3 to 7 and there is no missing data.

Dataset Features. In order to calculate landscape features of
each dataset that hopefully characterize the underlying optimiza-
tion problem, we used the R package FLACCO [5]. The features
considered here belong to the set of “simple” or ELA metamodel
features, which are calculated by creating linear and quadratic mod-
els on the dataset. The parameters and accuracy of these models,
such as the intercept of the linear model or the adjusted R-square
of the models, form the features of the dataset, resulting in a total
of 10 features. In addition to the landscape features, three other fea-
tures were included per dataset: the dimensionality of the decision
space, the number of samples, and a Boolean variable representing
whether the sampling was uniformly distributed or not. Table 4
describes all features.

Table 2: Surrogate modelling techniques available for auto-
matic selection.

Surrogate modelling technique Keyword

Support vector machine SVR
Neural networks NN

Adaptive boosted regression Ada
Gaussian process regression GPR
Stochastic gradient descent SGD

K Nearest neighbour KNR
Decision trees DTR
Random forest RFR

Extra trees regression ExTR
Gradient boosted regression GBR

Table 3: Classification methods evaluated for the selector.

Classifier method Keyword

Bagging BC
Support vector machine SVC

K-nearest neighbor KNC
Nearest centroid NC
Gaussian process GPC

Decision tree DTC
Neural network NNC

Extremely randomized tree ExTC1
Extra-trees ExTC2

Surrogate Modelling Techniques. We consider 10 popular
surrogate modelling techniques (Table 2), from which the selec-
tor must choose one. In particular, we use the standard imple-
mentations of these techniques available in the Python package
scikit-learn [9] with their default hyper-parameters. Surrogate
models are trained and evaluated on one dataset at a time by ran-
domly splitting the dataset into 70% solutions used for training
and 30% solutions used to compute an R2 value to measure the
performance of the surrogate model.

Selector. In our proposal, the selector that chooses a surrogate
modelling technique is a classifier. Since we do not have any intu-
ition about which classifier may perform best for this task, we evalu-
ate here nine alternative classifiers (see Table 3).We use the standard
implementation of these classifiers available from scikit-learn
with default hyper-parameters. To compare the classifiers, we use

Automatic Surrogate Model Selector GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic

Table 4: Dataset features used for selector training and application.

Feature Name Description

ela_meta.lin_simple.adj_r2 Adjusted R2 of a simple linear model

ela_meta.lin_simple.intercept Intercept of a simple linear model

ela_meta.lin_simple.coef.min Smallest non-intercept coefficient of the linear simple model

ela_meta.lin_simple.coef.max Largest non-intercept coefficient of the linear simple model

ela_meta.lin_simple.coef.max_by_min Ratio of the largest and smallest non-intercept coefficient of the linear simple model

ela_meta.lin_w_interact.adj_r2 Adjusted R2 of a simple linear model with interactions

ela_meta.quad_simple.adj_r2 Adjusted R2 of a simple quadratic model

ela_meta.quad_simple.cond The ratio of the biggest and smallest cofficients of the simple quadratic model

ela_meta.quad_w_interact.adj_r2 Adjusted R2 of a quadratic model with interactions

ela_meta.costs_runtime Runtime for the computation of the features

numsamples Number of samples in the problem instance

dimensionality Dimensionality of the decision space of the problem instance

is_uniform True if data is uniformly distributed in decision space, otherwise false

the custom cost function described by Eq. 2. The dataset features
explained above together with the R2 values of each surrogate mod-
elling technique on each dataset are the input data for the classifier
during the training phase, while only the dataset features are avail-
able to the classifier on the application phase when selecting a
surrogate model.

Source Code. The SMTS code can be found at https://github.
com/industrial-optimization-group/SurrogateAgents2/releases/tag/
GECCO2019

3.2 Experimental Results
As the first experiment, we train each of the classifiers in Table 3 on
70% of the benchmark datasets and perform automatic selection of
a surrogate modelling technique on the remaining 30% datasets to
calculate a cost value.1 We repeat this step 50 times with different
random splits of the benchmark datasets, thus obtaining 50 cost
values per classifier, which are shown as boxplots in Figure 2.

The plot shows that most classifiers were able to select a high-
performing surrogate model, with cost values very close to zero.
Of particular note are the BC, SVC, KNC, DTC, ExTC1 and ExTC2
classifiers, all of which had a cost value below 0.05 consistently.
Given the random 70%/30% split of the datasets, the same exact
dataset is not available for training and selection. However, the
same underlying optimization problem may appear in both phases.
Nevertheless, some classifiers performed very poorly, which sug-
gests that selecting the best-performing classifier is not trivial.

In the second experiment, we focus on the best trained variant
of each classifier from the first experiment and evaluate it on the
engineering datasets. In other words, we choose as a selector for
the application phase the trained version of each classifier with the

1As explained above, when training and evaluating each surrogate modelling technique
on each dataset, the dataset itself is also randomly split into 70% points used for training
and 30% points used for computing R2 values.

BC SVC KNC NC GPC DTC NNC ExTC1 ExTC2
Classification Algorithm

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Co
st

Figure 2: Cost values of each classifier on the benchmark
datasets. Each point is the cost value of the surrogate mod-
elling technique selected by the corresponding classifier for
one random 70%/30% split of the benchmark datasets. Each
boxplot contains 50 cost values.

lowest cost out of the 50 repetitions of the training phase performed
above. We then use this selector to select surrogate modelling tech-
niques for each engineering dataset. More specifically, a random
(training) 70% subset of each engineering dataset is used to com-
pute features, the classifier uses these features to select a surrogate
model, the selected surrogate model is trained on the same training
subset and its R2 value is computed on the remainder 30% data of
the dataset. We also calculate the R2 value of all other surrogate
modelling techniques so that we can identify the best-performing

https://github.com/industrial-optimization-group/SurrogateAgents2/releases/tag/GECCO2019
https://github.com/industrial-optimization-group/SurrogateAgents2/releases/tag/GECCO2019
https://github.com/industrial-optimization-group/SurrogateAgents2/releases/tag/GECCO2019

GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic Bhupinder Singh Saini, Manuel López-Ibáñez, and Kaisa Miettinen

technique and compute the loss function (Eq. 1). Figure 3 shows the
loss values of all the selectors for all 84 engineering datasets. In this
case, obtaining a perfect score is much more difficult, as the selector
was trained in samples of features generated from the benchmark
datasets that are quite different from the feature samples generated
from the engineering datasets. Nevertheless, the performance of
the various classifiers follows a similar pattern as in the first ex-
periment. In particular, BC, KNC, SVC, ExTC1 and ExTC2 again
perform better than the rest.

Table 5 shows the means and sample standard deviations of
the loss values of each classifier over all engineering datasets. By
looking at the mean loss values we can say that the SVC selector
performed the best with a mean value of 0.052 and a standard de-
viation of 0.096. This means that the classifier is selecting good
surrogate modelling techniques, among the ones available, for most
of the engineering problems. However, we noticed that the SVC
selector always selected the same surrogate modelling technique
(GBR) for all datasets. This technique belongs to the group of ensem-
ble based techniques, all of which performed very well for most of
the problems. By contrast, the second best selector, ExTC2, selected
different surrogate models for different engineering datasets, and
still achieved excellent loss values.

Table 5: Mean and standard deviation of loss values of selec-
tion on engineering data.

Classification Standard
method Mean loss deviation of loss

BC 0.1072 0.2369
SVC 0.0518 0.0963
KNC 0.1798 0.3407
NC 0.3887 0.4153

GPC 0.7351 0.3723
DTC 0.2516 0.3972
NNC 0.1553 0.2730

ExTC1 0.0979 0.1895
ExTC2 0.0853 0.1689

Finally, we compare the actual R2 values of the selected sur-
rogate models versus the rest. As described above, all surrogate
modelling techniques were trained on a random 70% subset of each
engineering dataset and their R2 value is calculated on the remain-
der 30%. Figure 4 shows the mean R2 values (as lines, with a 95%
confidence interval as a shaded area) of each surrogate modelling
technique over all datasets generated from each engineering prob-
lem (x-axis). Good surrogate models have R2 values close to 1 with
a low variance. Interestingly, popular surrogate modelling tech-
niques such as support vector machines (SVM), neural networks
(NN), and Gaussian processes (GPR), had a significantly worse accu-
racy than ensemble methods such as extra-trees regression (ExTR)
and gradient boosted regression (GBR).

The black line in Figure 4 shows the mean R2 values obtained
when the SVC classifier selects the surrogate modelling technique
for each dataset. Figure 5 shows the same data and, instead, the
black line indicates the mean R2 values obtained by the surrogate
modelling technique selected by ExTC2 classifier. These plots show

BC SVC KNC NC GPC DTC NNC ExTC1 ExTC2
Classification Algorithm

0.0

0.2

0.4

0.6

0.8

1.0

Lo
ss

Figure 3: Loss values of each classifier on the benchmark
datasets. Each point is the loss value of the surrogate mod-
elling technique selected by the corresponding classifier for
one engineering dataset after training the classifier on the
benchmark datasets. Each boxplot contains 84 loss values.

that the SVC classifier has a lower mean loss value than ExTC2
because it performs significantly better in the pressure_f1 and the
unconstrained_f_f1 problem. Although neither classifier is able
to always select the surrogate model with the highest R2 value, both
are always able to select surrogate models with R2 larger than 0.8,
except for problems gear_train_f1 and unconstrained_f_f1.
Given the behavior of the surrogate models on these two prob-
lems, it seems likely that either our training phase does not have
benchmark problems with the appropriate features, or we are lack-
ing the features required to characterize these problems.

4 CONCLUSIONS
In this paper, we have proposed the automatic selection of surro-
gate modelling techniques for a given dataset by using features
that aim at characterizing the underlying optimization problem. We
describe here a proof-of-concept system that uses exploratory land-
scape features provided by the FLACCO package in addition to the
dimensionality of the data, the number of points in the dataset and
whether the dataset is a uniform sample or not. These features are
used to select among ten available surrogate modelling techniques.
For evaluating our proposal, we have generated a diverse set of
datasets from popular benchmark functions as well as real-world
engineering problems. In addition, we have compared nine differ-
ent classifiers to be used as the selector of the proposed automatic
surrogate model selection technique.

The preliminary experimental results presented in this work
show that the choice of a classifier to be used as a selector is crucial,
with significant differences in performance between classifiers. In
addition, the best classifiers for benchmark datasets turned out
to also perform well on engineering datasets. Another interesting
result was that, despite the fact that no single surrogate modelling

Automatic Surrogate Model Selector GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic

four_bar_f1
four_bar_f2

gear_train_f1
kursawe_f1

kursawe_f2
pressure_f1

pressure_f2

speed_reducer_f1

speed_reducer_f2

speed_reducer_f3

unconstrained_f_f1
welded_beam_f1

problem

0.0

0.2

0.4

0.6

0.8

1.0

R
2

Modelling Technique
Ada
KNR
ExTR

SVM
GPR
DTR
GBR

NN
SGD
RFR
Auto selected

Figure 4: Mean R2 values (and 95% confidence interval as shaded area) of each surrogate modelling technique when applied to
all datasets generated from each engineering problem (x-axis). The black line indicates the mean R2 value when SVC is used
to select a surrogate modelling technique for each dataset.

four_bar_f1
four_bar_f2

gear_train_f1
kursawe_f1

kursawe_f2
pressure_f1

pressure_f2

speed_reducer_f1

speed_reducer_f2

speed_reducer_f3

unconstrained_f_f1
welded_beam_f1

problem

0.0

0.2

0.4

0.6

0.8

1.0

R
2

Modelling Technique
Ada
KNR
ExTR

SVM
GPR
DTR
GBR

NN
SGD
RFR
Auto selected

Figure 5: Mean R2 values (and 95% confidence interval as shaded area) of each surrogate modelling technique when applied
to all datasets generated from each engineering problem (x-axis). The black line indicates the mean R2 value when ExTC2 is
used to select a surrogate modelling technique for each dataset.

GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic Bhupinder Singh Saini, Manuel López-Ibáñez, and Kaisa Miettinen

technique was always the best for all datasets, the automatic se-
lection method was able to select surrogate modelling techniques
with R2 values higher than 0.8 in almost all datasets, when using
the best or second-best classifier as a selector.

Although this research is at a very preliminary stage and there
is much that could be improved, we believe that our results already
show the potential of automatically selecting surrogate models
for unseen data by training on datasets generated from known
optimization problems.

Among the obvious improvements, we plan to simplify the cre-
ation and use of cross-validation sets for training and validating
the surrogate models as well as the selector to make better use of
the available data while keeping the benefits of separating training
and validation data. In addition, we evaluated the various classifiers
using a custom loss function. However, the training of the classi-
fier could be itself cost-sensitive. Moreover, as surrogate modelling
techniques are frequently used in conjunction with optimization
algorithms, the quality of the optimal solutions obtained can also
be used as a metric for training the Selector. The Selector, thus, is
trained to select surrogate modelling techniques that perform well
when used along with the considered optimization algorithms. We
also considered “only” ten surrogate modelling techniques with
default hyperparameter settings. Although this is a much larger
number than what is usually considered in the data-driven surro-
gate modelling literature, it should be possible to select not only
from an even larger pool, but also from various sets of hyperparam-
eter settings. Moreover, we plan to analyze the importance of the
features used by the selector. This will give us a better understand-
ing of which characteristics of the problem instances are desirable
as features, and will enable us to explore a much larger landscape of
features productively. Finally, we plan to include more diverse train-
ing datasets, as our results suggest that our current training phase
does not capture the characteristics of some real-world engineering
problems.

ACKNOWLEDGMENTS
This research was partly supported by the Academy of Finland
(grant number 287496, project DESDEO). This related to the the-
matic research area DEMO (Decision Analytics utilizing Causal

Models and Multiobjective Optimization, jyu.fi/demo) of the Uni-
versity of Jyvaskyla.

REFERENCES
[1] F. Y. Cheng and X. S. Li. 1999. Generalized center method for multiobjective

engineering optimization. Engineering Optimization 31, 5 (1999), 641–661.
[2] T. Chugh, K. Sindhya, J. Hakanen, and K. Miettinen. 2019. A survey on handling

computationally expensive multiobjective optimization problems with evolution-
ary algorithms. Soft Computing 23, 9 (2019), 3137–3166.

[3] K. Deb, L. Thiele, M. Laumanns, and E. Zitzler. 2005. Scalable Test Problems
for Evolutionary Multiobjective Optimization. In Evolutionary Multiobjective
Optimization, A. Abraham et al. (Eds.). Springer, London, UK, 105–145.

[4] S. Huband, P. Hingston, L. Barone, and L. While. 2006. A review of multiob-
jective test problems and a scalable test problem toolkit. IEEE Transactions on
Evolutionary Computation 10, 5 (2006), 477–506.

[5] P. Kerschke and H. Trautmann. 2016. The R-package FLACCO for exploratory
landscape analysis with applications to multi-objective optimization problems.
In Proceedings of the 2016 Congress on Evolutionary Computation (CEC 2016). IEEE
Press, Piscataway, NJ, 5262–5269.

[6] P. Kerschke and H. Trautmann. 2019. Automated Algorithm Selection on Contin-
uous Black-Box Problems by Combining Exploratory Landscape Analysis and
Machine Learning. Evolutionary Computation 27, 1 (2019), 99–127.

[7] F. Kursawe. 1991. A variant of evolution strategies for vector optimization. In
Proceedings of PPSN-I, First International Conference on Parallel Problem Solving
from Nature, H.-P. Schwefel and R. Männer (Eds.). Springer, Berlin, Heidelberg,
193–197.

[8] M. Mahdavi, M. Fesanghary, and E. Damangir. 2007. An improved harmony
search algorithm for solving optimization problems. Appl. Math. Comput. 188, 2
(2007), 1567–1579.

[9] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R.Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research 12 (2011), 2825–2830.

[10] J. R. Rice. 1976. The Algorithm Selection Problem. Advances in Computers 15
(1976), 65–118.

[11] E. Sandgren. 1990. Nonlinear integer and discrete programming in mechanical
design optimization. Journal of Mechanical Design 112, 2 (1990), 223–229.

[12] J. N. Siddall. 1982. Optimal Engineering Design: Principles and Applications. Marcel
Dekker Inc., New York.

[13] K. Smith-Miles. 2008. Cross-disciplinary Perspectives on Meta-learning for
Algorithm Selection. Comput. Surveys 41, 1 (2008), 1–25.

[14] E. Zitzler, L. Thiele, and K. Deb. 2000. Comparison of Multiobjective Evolutionary
Algorithms: Empirical Results. Evolutionary Computation 8, 2 (2000), 173–195.

	Abstract
	1 Introduction
	2 Automatic Selection of Surrogate Modelling Techniques
	3 Experimental Study
	3.1 Experimental Setup
	3.2 Experimental Results

	4 Conclusions
	Acknowledgments
	References

