
An Analysis of Parameters of irace

Leslie Pérez Cáceres, Manuel López-Ibáñez, and Thomas Stützle

{leslie.perez.caceres, manuel.lopez-ibanez, stuetzle}@ulb.ac.be,
IRIDIA, CoDE, Université libre de Bruxelles, Belgium

Abstract. The irace package implements a flexible tool for the au-
tomatic configuration of algorithms. However, irace itself has specific
parameters to customize the search process according to the tuning sce-
nario. In this paper, we analyze five parameters of irace: the number of
iterations, the number of instances seen before the first elimination test,
the maximum number of elite configurations, the statistical test and the
confidence level of the statistical test. These parameters define some key
aspects of the way irace identifies good configurations. Originally, their
values have been set based on rules of thumb and an intuitive under-
standing of the configuration process. This work aims at giving insights
about the sensitivity of irace to these parameters in order to guide their
setting and further improvement of irace.

1 Introduction

Algorithm configuration [5, 9] is the task of finding a setting of the categori-
cal, ordinal, and numerical parameters of a target algorithm that exhibit good
empirical performance on a class of problem instances. Currently, few tools are
available for configuring algorithms automatically [1,4,10–12]. The irace pack-
age [12] implements an iterated racing framework for the automatic configuration
of algorithms [3,6]. irace is currently available as an R package and the details
of its implementation and a tutorial on how to use it can be found in [12]. The
implementation of irace is flexible, allowing the user to adjust the configura-
tion process according to the configuration scenario at hand. As a flexible tool,
irace itself has parameters. The default parameter settings of irace have been
defined by rules of thumb based on intuition of how the configuration process
may work [3, 6, 12]. So far, experimental analysis of these parameters have fo-
cused on a single race, studying the effect of the number of initial configurations,
the particular statistical test or the confidence level [5,7]. This paper is the first
to empirically study the impact that specific settings of irace parameters have
on the effectiveness of the configuration process. Section 2 describes details of
irace and its default settings, Section 3 describes the experimental setup and
Section 4 presents the experiments results. We conclude in Section 5.

2 The irace Procedure

Automatic algorithm configuration tools, henceforth called configurators, are al-
gorithms that tackle expensive, stochastic nonlinear mixed-variable optimization



problems. The problem tackled by a configurator is called a configuration sce-

nario and it is given as a target algorithm to be configured, a set of training
instances representative of the problem to be solved by the target algorithm,
and the configuration budget, which is the maximum computational effort (e.g.,
number of runs of the target algorithm) that the configurator has available. In
addition, configurators have themselves parameters that affect their search.The
search of irace consists of a number of iterations. In each iteration, a set of
candidate algorithm configurations is generated and the best configurations of
the iteration are identified by racing. Within a race, configurations are tested on
a sequence of problem instances and, at each step, all surviving configurations
are tested on a new instance. Candidate configurations are eliminated from the
race if they are found to be poor performing according to some criterion. In
irace, this criterion is implemented by means of statistical testing. For irace a
minimum number of iterations (N iter) is defined as N iter = ⌊2 + log2(N

param)⌋,
where Nparam is the number of parameters of the target algorithm. The user-
defined budget (B, the maximum number of target algorithm runs) is distributed
across the iterations by setting the budget Bi available for iteration i to

Bi =
(B −Bused

i
)

N iter − i+ 1
(1)

where Bused
i

is the budget that has already been used before iteration i. An it-
eration is stopped as soon as the budget is spent or the number of candidates in
the race reaches Nmax, defined by Nmax = ⌊2+ log2(N

param)⌋. If an iteration is
stopped due to this latter condition, the iteration budget may not be used com-
pletely, and thus there may be enough budget to do more than N iter iterations.
Each iteration starts with a set of Ci configurations:

Ci =

⌊

Bi

max(µ, T first) + min(5, i)

⌋

(2)

where µ ensures a minimum number of instances seen per iteration (five by de-
fault) and T first is explained below. Using this definition of Ci, the number of
candidates sampled decreases with the iteration number. This was done to ac-
count for the effect that candidate configurations become more similar as the
configuration process progresses and more problem instances are needed to dis-
criminate between them. In the first iteration of irace, an initial set of candidate
configurations may be specified, the other candidates are generated uniformly at
random. In the following iterations, the set of candidates is formed by the best
candidates of the previous iteration and by new candidates that are sampled
around these best candidates. For numerical (integer or continuous) parameters
a truncated normal distribution is used and for categorical parameters a discrete
one. Ordinal parameters are treated as integers. The distributions are updated
every iteration, biasing the sampling towards the best candidates found. Each
race evaluates the current set of candidates on a sequence of problem instances.
Candidates are discarded from the race as soon as they show statistically worse
performance than the best candidate so far. In the current irace implemen-
tation, either the Friedman test with its associated post-test [8] or a Student



t-test can be used as statistical test. The first statistical test of an iteration is
performed after seeing T first instances (T first = 5, by default). The survivors are
evaluated on the next instances and every T each instances a statistical test is
applied (T each = 1, by default). A race finishes when at most Nmax survivors
remain in the race or the available budget Bi is exhausted. At the end of an
iteration, the best candidates are selected from the survivors; these candidates
are called elite candidates. The number of elite candidates in an iteration is given
by Nelite

i
= min{N surv

i
, Nmax}, where N surv

i
is the number of candidates that

remain in the race when iteration i is finished. The selection of the elite candi-
dates is done by ranking them (according to the sum of ranks for the Friedman
test or the mean quality for t-test), and selecting from the lowest ranked. The
elite candidates are then used to generate new candidates; to do so, they are
selected to become parents with probability;

pz =
Nelite

i
− rz + 1

Nelite
i

· (Nelite
i

+ 1)/2
(3)

where Nelite
i

is the actual number of elite candidates in iteration i and rz is
the ranking of elite candidate z. New candidates are sampled according to the
distribution associated to each parameter in the selected parent. Once Ci can-
didates are obtained (including the Nelite

i
ones and newly sampled ones), a new

race begins. irace terminates when the total budget is exhausted or when the
remaining budget is not enough to perform a new iteration. Finally, the best
configuration found is returned.

3 Experimental Setup

In this section, we detail the configuration scenarios used for analyzing irace.
Each scenario has a target algorithm, a set of training and test instances and a
budget. The configuration scenarios are available at the supplementary informa-
tion page (http://iridia.ulb.ac.be/supp/IridiaSupp2013-008/).

3.1 Configuration Scenarios

ACOTSP is a software package that implements various ant colony optimiza-
tion (ACO) algorithms [17] for solving the Traveling Salesman Problem (TSP).
The ACOTSP scenario requires the configuration of 11 parameters of ACOTSP,
three categorical, four integer and four continuous. The training set is composed
of ten random Euclidean TSP instances of each of 1000, 1500, 2000, 2500 and
3000 cities; the test set has 50 instances of each of the previous sizes. All in-
stances and their optimal solutions are available from the supplementary pages.
The goal is to minimize tour length. The maximum execution time of a run of
ACOTSP is set to 20 seconds and the total configuration budget to 5000 runs.
SPEAR is a tree search solver for SAT problems [2]. The SPEAR scenario

requires the configuration of 26 parameters of SPEAR, all of them categorical.

http://iridia.ulb.ac.be/supp/IridiaSupp2013-008/


The training and the test set are composed of 302 SAT instances each, which
belong to the SAT configuration benchmark “Spear-swv”. The goal is to min-
imize mean algorithm runtime. The maximum execution time for each run of
SPEAR is set to 300 seconds and the total configuration budget is 10000 runs.

MOACO is a framework of multi-objective ACO algorithms [13]. The MOACO
scenario requires the configuration of 16 parameters: 11 categorical, one integer
and four real. The training and the test set are composed each of 10 instances
of 500, 600, 700, 800, 900, 1000 cities. The goal is to optimize the quality of
the Pareto-front approximation as measured by the hypervolume quality mea-
sure [18]. The hypervolume is to be maximized, however, for consistency with
the other scenarios, we plot the negative normalized hypervolume, which is to
be minimized. The maximum execution time of each run of MOACO is defined
by 4 · (instance size/100)2. The total configuration budget is 5000 runs.

3.2 Training Set Analysis

The homogeneity of the training set with respect to algorithm performance is
conjectured to have a high impact on the configuration process and possibly
on the parameter settings of configurators. Homogeneity refers to the correla-
tion between algorithm performance across instance sets: highly homogeneous
instance sets maintain the same relative ranking of algorithms; highly hetero-
geneous instance sets lead to strongly different rankings depending on the par-
ticular problem instance to be tackled. Consequently, highly heterogeneous sets
hinder the progress of the configuration process as candidate algorithm config-
urations may have inconsistent performance. A parametric measure of instance
set homogeneity was proposed in [14], suggesting that the Friedman test statis-
tic may be useful. As this latter statistic is not normalized and, thus, depends
on the number of instances and configurations, we use the Kendall concordance
coefficient (W ) [15], which is a normalization of the Friedman test statistic. For
each training set we generate 100 candidates uniformly distributed in the con-
figuration parameter space. These candidates are evaluated on the instance set
and Kendall’s W statistic is calculated using instances as blocks and candidates
as groups. The statistic of this test can be interpreted as a measure of how sim-
ilar is the relative performance of candidates (that is, their ranking) across the
instance set. A value close to one indicates high homogeneity, a value close to
zero high heterogeneity. We performed the test using the complete instance sets
and subsets grouped by instance size (ACOTSP and MOACO) or instance type
(SPEAR). As shown by Table 1, the instances used in the ACOTSP and MOACO
scenarios are much more homogeneous than those in the SPEAR scenario.

3.3 Experimental Setup

In the following sections, each experiment consists of 20 trials of irace, resulting
in 20 final best configurations for each configuration scenario and each parameter
setting of irace. For each configuration obtained, the average performance on



Table 1. Kendall’s W statistic measured across 100 algorithm configurations on the
training sets (all) and subsets grouped by size or type. The Set column is the set or
subset of instances, the Size column is the number of instances in the set.

ACOTSP SPEAR MOACO

Set Size W Set Size W Set Size W

all 50 0.96974 all 302 0.16017 all 60 0.99049
1000 10 0.98227 dspam 49 0.15446 500 10 0.99152
1500 10 0.98125 gzip 37 0.38442 600 10 0.99206
2000 10 0.98250 hsat 148 0.15510 700 10 0.99322
2500 10 0.98493 itox 26 0.61934 800 10 0.99256
3000 10 0.98089 winedump 17 0.29974 900 10 0.99311

winegcc 22 0.62083 1000 10 0.99096
xinetd 3 0.35308

Table 2. Wilcoxon signed-rank test p-values comparing the mean performance over the
test instances of configurations obtained by irace using N iter ∈ {1, 3,default, large}.

default vs. large default vs. 3 default vs. 1

ACOTSP SPEAR MOACO ACOTSP SPEAR MOACO ACOTSP SPEAR MOACO

F-test 0.33 0.4304 0.8695 0.7562 0.7562 0.0003948 1.907e−5 0.7285 1.907e−6

t-test 0.2943 0.498 0.0007076 0.7285 0.4304 1.907e−6 0.0002098 0.5459 1.907e−6

the test set is computed. We repeat each experiment using, as elimination test
either the F-test (and its associated post-hoc tests) or the Student t-test without
multiple test correction.1 The experiments were executed on a cluster running
Cluster Rocks GNU/Linux 6.0. The experiments involving the ACOTSP scenario
were executed on an AMD Opteron 6128 with 8 cores of 2GHz and 16GB RAM.
The ones involving the SPEAR and MOACO scenarios were executed on an
AMD Opteron 6272 with 16 cores of 2.1GHz and 64GB RAM.

4 Experiments

In this section, we examine the impact of five parameters of irace on the per-
formance of the final algorithm configuration found in the configuration process.

Number of Iterations. The number of iterations (N iter) strongly modifies the
search behavior of irace. With more iterations, fewer configurations are used
in each iteration. The number of newly sampled configurations is also reduced
as the number of elite configurations remains the same. Overall, this leads to an

1 Using multiple test corrections in the Student t-test results in a search process that
does not effectively eliminate poor candidates [5]. Avoiding multiple test corrections
makes the process more heuristic, but proves to be effective.



0.0055

0.0060

0.0065

0.0070

0.0075

0.0080
ACOTSP

%
 d

ev
ia

tio
n 

fr
om

 o
pt

.

i=1 i=3 i=5 i=8

10
20
30
40
50
60

SPEAR

M
ea

n 
ru

nt
im

e

i=1 i=3 i=6 i=11

−1.055

−1.050

−1.045

−1.040

−1.035

−1.030
MOACO

M
ea

n 
hy

pe
rv

ol
um

e

i=1 i=3 i=6 i=10
(a) F-test

0.006

0.007

0.008

0.009
ACOTSP

%
 d

ev
ia

tio
n 

fr
om

 o
pt

.

i=1 i=3 i=5 i=8
0

10

20

30

40

50

SPEAR

M
ea

n 
ru

nt
im

e

i=1 i=3 i=6 i=11

−1.055

−1.050

−1.045

−1.040

−1.035

−1.030
MOACO

M
ea

n 
hy

pe
rv

ol
um

e

i=1 i=3 i=6 i=10
(b) t-test

Fig. 1. Box plots of the mean performace over the test instances of 20 configurations
obtained by irace using N iter ∈ {1, 3,default, large}.

intensification of the search by splitting the budget in short races. Less iterations,
on the other hand, lead to a stronger diversification of the search. The default
number of iterations of irace depends on the number of parameters. We increase
this value to N iter = ⌊2 + 2 · log2(N

param)⌋ and we refer to this setting as
“large” in the following. Additionally, we use two fixed settings: N iter = 3 and
N iter = 1. The latter actually corresponds to a single race using configurations
sampled uniformly at random [3]. In Fig. 1, we present the results of the 20
independent executions of irace on the three configuration scenarios and the
results of the Wilcoxon test are shown in Table 2. In the SPEAR scenario,
none of the differences is statistically significant, confirming the observation from
the box-plots that no clear differences arise. Surprisingly, even a race based
on a single random sample of configurations (N iter = 1) obtains reasonable
performance here. This is different from the MOACO and ACOTSP scenarios,
where irace with N iter = 1 performs significantly worse than the other settings,
confirming earlier results [6]. Other differences in the ACOTSP scenario are,
however, not statistically significant. In the MOACO scenario, the default setting
performs significantly better than N iter = 3, while the large setting performs
significantly worse than the default only when using t-test. The results indicate
that the default setting is overall reasonably robust. Nonetheless, the number
of iterations has an impact on the quality of the final configurations and the
adaptation of the number of iterations to the configuration scenario may be
useful to improve irace performance.

First Elimination Test. The elimination of candidates during the race allows
irace to focus the search around the best configurations. Here, we analyze the



0.0055

0.0060

0.0065

0.0070

0.0075

ACOTSP

%
 d

ev
ia

tio
n 

fr
om

 o
pt

.

f=2 f=5

10

20

30

40

SPEAR

M
ea

n 
ru

nt
im

e

f=2 f=5
−1.054
−1.052
−1.050
−1.048
−1.046
−1.044
−1.042

MOACO

M
ea

n 
hy

pe
rv

ol
um

e

f=2 f=5
(a) F-test

0.0055

0.0060

0.0065

0.0070

0.0075
ACOTSP

%
 d

ev
ia

tio
n 

fr
om

 o
pt

.

f=2 f=5

10

20

30

40
SPEAR

M
ea

n 
ru

nt
im

e

f=2 f=5

−1.056

−1.054

−1.052

−1.050

−1.048
MOACO

M
ea

n 
hy

pe
rv

ol
um

e

f=2 f=5
(b) t-test

Fig. 2. Box plots of the mean performace over the test instances of 20 configurations
obtained by irace using T first ∈ {2, 5}.

Table 3. Wilcoxon signed-rank test p-values comparing the mean performance over
the test instances of configurations obtained by irace using T first = 2 vs. T first = 5.

ACOTSP SPEAR MOACO

F-test 0.01362 0.1231 0.1231
t-test 0.03623 0.5958 0.6477

sensibility of irace to the number of instances evaluated before performing the
first elimination test (T first). We performed experiments using the default set-
ting of (T first = 5) and a reduced value of T first = 2. Reducing the value of T first

allows irace to more aggressively eliminate configurations. The budget saved in
this way may be used later to sample a higher number of configurations. How-
ever, good configurations may erroneously be lost more easily. The experimental
results are shown in Fig. 2. In the ACOTSP scenario a setting of T first = 2
seems to worsen performance, while on the SPEAR and MOACO scenarios no
clear differences are visible. The Wilcoxon paired test in Table 3 supports this
analysis. Our hypothesis was that with a setting of T first = 2, poor candidates
are eliminated earlier and in later iterations more candidates may be sampled. In
order to corroborate this hypothesis, we plot the development of the number of
surviving configurations during the search process of irace (Fig. 3). The plots
show one run of irace that is representative for the general behavior.

Maximum Number of Elite Configurations. The maximum number of
elite configurations (Nmax) influences the exploration / exploitation trade-off
in the search process. In the extreme case of Nmax = 1, irace samples new



0
50

10
0

15
0

Number of survivors ACOTSP trial 12

Number of training instances seen

f=5
f=2

0
50

10
0

15
0

N
um

be
r 

of
 s

ur
vi

vo
rs

 in
 e

xe
cu

tio
n

0
50

15
0

25
0

Number of survivors SPEAR trial 16

Number of training instances seen

f=5
f=2

0
50

15
0

25
0

N
um

be
r 

of
 s

ur
vi

vo
rs

 in
 e

xe
cu

tio
n

0
50

15
0

25
0

35
0 Number of survivors MOACO trial 9

Number of training instances seen

f=5
f=2

0
50

15
0

25
0

35
0

N
um

be
r 

of
 s

ur
vi

vo
rs

 in
 e

xe
cu

tio
n

Fig. 3. Number of surviving candidates in irace using T first ∈ {2, 5} and F-test.

configurations only around the best configuration found so far. A larger value of
Nmax (potentially) induces a more diverse search. In this section, we examine
the possible differences that are incurred by setting Nmax = 1 and compare it
to the default setting. The results of these experiments are shown in Fig. 4 and
the Wilcoxon test p-values in Table 4. While in the ACOTSP scenario using
only one elite configuration worsens significantly performance, in the MOACO
and SPEAR scenarios performance it is not significantly worse. Intensifying the
search by strongly reducing the number of elite candidates does not seem to
improve the performance of the final configurations in any of the configuration
scenarios. These results indicate that the default setting is reasonably adequate.

Statistical Test. The main difference between the F-test (plus post-test) and
the Student t-test is that the latter uses the raw quality values returned by the
target algorithm, while the former transforms the values into ranks. Hence, the
F-test can detect minimal but consistent differences between the performance
of the configurations but it is insensitive to large sporadic differences, whereas
the t-test is influenced by such outliers. Figure 5 shows box-plots comparing
the configurations obtained using both statistical tests and Table 5 provides the
Wilcoxon test p-values. The first set of plots show the average performance of
the candidates on the test set and the second set of plots compares the average
performance of the candidates per instance. The results of the Wilcoxon test
indicate significant differences only for the MOACO case, where the usage of the
t-test leads to better performance. It is interesting, however, to analyze in more
detail the SPEAR configuration scenario. While there is no significant difference
w.r.t. to the average performance (mean runtime), the F-test leads to shorter
runtimes on more instances than the t-test; however, the t-test performs much
better than the configurations obtained by the F-test on the subset of the hsat

instances. Configurations obtained by using the F-test solve a majority of in-
stances faster than configurations obtained by using the t-test; this difference is
statistically significant. This corresponds to the fact that the F-test prefers to
improve the mean ranking by performing well on a majority of instances while
the t-test improves the mean performance and tends to reduce worst case per-
formance, which in the SPEAR configuration scenario are very long runtimes.
In this sense, these results confirm earlier observations for different configura-
tors [11, 16].



0.0055

0.0060

0.0065

0.0070

0.0075
ACOTSP

%
 d

ev
ia

tio
n 

fr
om

 o
pt

.

s=1 s=5

10
20
30
40
50
60
70

SPEAR

M
ea

n 
ru

nt
im

e

s=1 s=6

−1.060

−1.055

−1.050

−1.045
MOACO

M
ea

n 
hy

pe
rv

ol
um

e

s=1 s=6
(a) F-test

0.0055
0.0060
0.0065
0.0070
0.0075
0.0080

ACOTSP

%
 d

ev
ia

tio
n 

fr
om

 o
pt

.

s=1 s=5

5
10
15
20
25
30

SPEAR

M
ea

n 
ru

nt
im

e

s=1 s=6

−1.060
−1.058
−1.056
−1.054
−1.052
−1.050
−1.048

MOACO

M
ea

n 
hy

pe
rv

ol
um

e

s=1 s=6
(b) t-test

Fig. 4. Box plots of the mean performace over the test instances of 20 configurations
obtained by irace using Nmax ∈ {1, default}.

Table 4. Wilcoxon signed-rank test p-values comparing configurations obtained by
irace using the default setting of Nmax vs. Nmax = 1, over the test set.

ACOTSP SPEAR MOACO

F-test 3.624e−5 0.7285 0.4304
t-test 0.0005856 0.5958 0.4304

Table 5. Wilcoxon signed-rank test p-values comparing configurations obtained by
irace using F-test vs. t-test.

ACOTSP SPEAR MOACO

0.2943 0.5958 0.03277

Statistical Test Confidence Level. The confidence level of the irace elim-
ination test is set by default to 0.95. Larger values mean that the test is more
strict, so it takes more evaluations (or clearer differences) to eliminate configura-
tions; lower values allow eliminating configurations faster, save budget, but risk
removing good configurations based on few unlucky runs. We assess the effect of
this parameter on the configuration process by experimenting with confidence
levels ∈ {0.75, 0.95, 0.99}. Results are summarized in Fig. 6 and Table 6. For the
ACOTSP configuration scenario, a setting of 0.99 is clearly worse than the de-
fault setting. Even if on the MOACO configuration scenario the 0.99 confidence
level is significantly better than the default, the absolute difference is small and
we would recommend using the default 0.95 level. Considering a smaller confi-
dence level such as 0.75 may be an option. In fact, in two cases this setting is



0.0055

0.0060

0.0065

ACOTSP

%
 d

ev
ia

tio
n 

fr
om

 o
pt

.

F−test t−test

5
10
15
20
25
30

SPEAR

M
ea

n 
ru

nt
im

e

F−test t−test
−1.058
−1.056
−1.054
−1.052
−1.050
−1.048
−1.046

MOACO

M
ea

n 
hy

pe
rv

ol
um

e

F−test t−test
(a) Box plots of the mean performance over the test instances of 20 configurations ob-
tained by irace.

0.002

0.004

0.006

0.008

0.010

0.012
ACOTSP

1000
1500
2000
2500
3000

t−
te

st

F−test
0

50

100

150

SPEAR
dspam
gzip
hsat
itox
winedump
winegcc
xinetdt−

te
st

F−test
−1.07

−1.06

−1.05

−1.04

−1.03
MOACO

500
600
700
800
900
1000t−

te
st

F−test
(b) Scatter plots of the mean performace per instance over the 20 configurations
obtained by irace.

Fig. 5. Comparison of the mean performance over the test instances of 20 configura-
tions obtained by irace using F-test and t-test.

statistically better than the default setting while in one it is worse. However,
the results also indicate that the behavior of irace is affected differently by the
confidence level used depending on the statistical test used (see, e.g. MOACO
configuration scenario). This is different from the other experiments, where the
impact of irace parameter settings was similar for both elimination tests.

5 Final Remarks and Future Work

In this paper, we analyse the impact of five irace parameters on the final con-
figuration performance. The experiments were performed on three configuration
scenarios. The ACOTSP and the MOACO scenarios show a fairly homogeneous
training set, while the SPEAR configuration scenario has a highly heterogeneous
set of instances and a large variability of the quality values (runtime), making
the configuration process more variable. The default settings of the number of it-
erations and the number of elite configurations proved to be reasonably robust.
Reducing the setting of the first elimination test did not improve the perfor-
mance of irace, although the results obtained suggest that lower values for this
parameter could be used with highly homogeneous sets of instances. Larger dif-
ferences were observed when altering the type of statistical test. However, in this
case, the best setting depends on the goal of the configuration process. If the
goal should take into account outliers, then irace should use the t-test rather
than the F-test. Finally, the confidence level had a strong effect on the results.



0.006

0.007

0.008

0.009

ACOTSP

%
 d

ev
ia

tio
n 

fr
om

 o
pt

.

c=.75 c=.95 c=.99

10
20
30
40
50
60

SPEAR

M
ea

n 
ru

nt
im

e

c=.75 c=.95 c=.99

−1.060

−1.055

−1.050

−1.045
MOACO

M
ea

n 
hy

pe
rv

ol
um

e

c=.75 c=0.95 c=0.99
(a) F-test

0.0055
0.0060
0.0065
0.0070
0.0075
0.0080
0.0085

ACOTSP

%
 d

ev
ia

tio
n 

fr
om

 o
pt

.

c=.75 c=.95 c=.99
0

10

20

30

40

50
SPEAR

M
ea

n 
ru

nt
im

e

c=.75 c=.95 c=.99

−1.056

−1.054

−1.052

−1.050

−1.048

MOACO

M
ea

n 
hy

pe
rv

ol
um

e

c=.75 c=0.95 c=0.99
(b) t-test

Fig. 6. Box plots of the mean performace over the test instances of 20 configurations
obtained by irace using confidence level in {0.75, 0.95, 0.99}.

Table 6. Wilcoxon signed-rank test p-values comparing configurations obtained by
irace using confidence level in {0.75, 0.95, 0.99}.

0.75 vs. 0.95 0.99 vs. 0.95

ACOTSP SPEAR MOACO ACOTSP SPEAR MOACO

F-test 0.01531 0.4091 1.907e−6 1.907e−6 0.7841 0.002325

t-test 0.02148 0.9563 0.1429 1.907e−6 0.3683 0.2455

Large values were consistently worse, whereas lower values were sometimes bet-
ter depending on the scenario and the type of statistical test. Further work will
extend and complement the current experimental analysis in order to account
for more parameter settings and their possible interactions. Additional scenarios
may help to identify clearer trends or use an automatic configuration process to
configure improved default settings of irace. Nonetheless, the insights obtained
in this work are helping us to design future improvements to irace.

Acknowledgments This work received support from the META-X project, an Action

de Recherche Concertée funded by the Scientific Research Directorate of the French

Community of Belgium, the COMEX project within the Interuniversity Attraction

Poles Programme of the Belgian Science Policy Office, and the EU FP7 ICT Project

COLOMBO, Cooperative Self-Organizing System for Low Carbon Mobility at Low

Penetration Rates (agreement no. 318622). Manuel López-Ibáñez and Thomas Stützle

acknowledge support from the Belgian F.R.S.-FNRS, of which they are a postdoctoral

researcher and a senior research associate, respectively.



References

1. Ansótegui, C., Sellmann, M., Tierney, K.: A gender-based genetic algorithm for
the automatic configuration of algorithms. In: Gent, I.P. (ed.) CP 2009, LNCS,
vol. 5732, pp. 142–157. Springer-Verlag Berlin (2009)

2. Babić, D., Hutter, F.: Spear theorem prover. In: SAT’08: Proceedings of the SAT
2008 Race (2008)

3. Balaprakash, P., Birattari, M., Stützle, T.: Improvement strategies for the F-race
algorithm: Sampling design and iterative refinement. In: Bartz-Beielstein, T. et
al. (eds.) Hybrid Metaheuristics, LNCS, vol. 4771, pp. 108–122. Springer-Verlag
Berlin (2007)

4. Bartz-Beielstein, T., Lasarczyk, C., Preuss, M.: Sequential parameter optimization.
In: Proceedings of CEC 2005. pp. 773–780. IEEE Press (2005)

5. Birattari, M.: Tuning Metaheuristics: A Machine Learning Perspective, Studies in
Computational Intelligence, vol. 197. Springer (2009)

6. Birattari, M., Yuan, Z., Balaprakash, P., Stützle, T.: F-race and iterated F-race:
An overview. In: Bartz-Beielstein, T. et al. (eds.) Experimental Methods for the
Analysis of Optimization Algorithms, pp. 311–336. Springer-Verlag Berlin (2010)

7. Branke, J., Elomari, J.: Racing with a fixed budget and a self-adaptive significance
level. In: LION 7, LNCS 7997, pp. 272–280. Springer-Verlag Berlin (2013)

8. Conover, W.J.: Practical Nonparametric Statistics. John Wiley & Sons, (1999)
9. Hoos, H.H.: Automated algorithm configuration and parameter tuning. In:

Hamadi, Y. et al. (eds.) Autonomous Search, pp. 37–71. Springer-Verlag Berlin
(2012)

10. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization
for general algorithm configuration. In: Coello Coello, C.A. (ed.) LION 5, LNCS,
vol. 6683, pp. 507–523. Springer-Verlag Berlin (2011)

11. Hutter, F., Hoos, H.H., Leyton-Brown, K., Stützle, T.: ParamILS: an automatic
algorithm configuration framework. Journal of Artificial Intelligence Research 36,
267–306 (2009)

12. López-Ibáñez, M., Dubois-Lacoste, J., Stützle, T., Birattari, M.: The irace package,
iterated race for automatic algorithm configuration. Tech. Rep. TR/IRIDIA/2011-
004, IRIDIA, Université Libre de Bruxelles, Belgium (2011)

13. López-Ibáñez, M., Stützle, T.: The automatic design of multi-objective ant colony
optimization algorithms. IEEE Transactions on Evolutionary Computation 16(6),
861–875 (2012)

14. Schneider, M., Hoos, H.H.: Quantifying homogeneity of instance sets for algorithm
configuration. In: Hamadi, Y. et al. (eds.) LION 6, LNCS, vol. 7219, pp. 190–204.
Springer-Verlag Berlin (2012)

15. Siegel, S., Castellan, Jr, N.J.: Non Parametric Statistics for the Behavioral Sciences.
McGraw Hill, 2 edn. (1988)

16. Smit, S.K., Eiben, A.E.: Beating the “world champion” evolutionary algorithm via
REVAC tuning. In: Ishibuchi, H., et al. (eds.) Proceedings of CEC 2010, pp. 1–8.
IEEE Press (2010)

17. Stützle, T.: ACOTSP: A software package of various ant colony optimiza-
tion algorithms applied to the symmetric traveling salesman problem (2002),
http://www.aco-metaheuristic.org/aco-code/

18. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., Grunert da Fonseca, V.:
Performance assessment of multiobjective optimizers: an analysis and review. IEEE
Transactions on Evolutionary Computation 7(2), 117–132 (2003)

http://www.aco-metaheuristic.org/aco-code/

	An Analysis of Parameters of irace

