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Abstract. Pheromone-based heuristic column generation (ACO-HCG) is a hy-
brid algorithm that combines ant colony optimization and a MIP solver to tackle
vehicle routing problems (VRP) with black-box feasibility. Traditionally, the ex-
perimental analysis of such a complex algorithm has been carried out manually
by trial and error. Moreover, a full-factorial statistical analysis is infeasible due
to the large number of parameters and the time required for each algorithm run.
In this paper, we first automatically configure the algorithm parameters by using
an automatic algorithm configuration tool. Then, we perform a basic sensitivity
analysis of the tuned configuration in order to understand the significance of each
parameter setting. In this way, we avoid wasting effort analyzing parameter set-
tings that do not lead to a high-performing algorithm. Finally, we show that the
tuned parameter settings improve the performance of ACO-HCG on the multi-
pile VRP and the three-dimensional loading capacitated VRP.

1 Introduction

An advantage of metaheuristics is that they can be adapted to different problem variants
by adjusting their algorithmic components and parameter settings. The parameter con-
figuration often has a crucial impact on the performance of an algorithm on a particular
problem. However, complex algorithms typically have many parameters, resulting in a
large number of possible configurations of the algorithm. Testing all possible configu-
rations is typically intractable, particularly on problems where one run of the algorithm
may take several hours. Due to this intractability, only a very limited subset of parame-
ter configurations are tested when designing an algorithm, and such a subset is chosen
by the designer based on her intuitions. This manual approach may easily miss the
best-performing configurations for a metaheuristic.

Automatic algorithm configuration methods aim to identify high-performing con-
figurations of an algorithm for a given problem [2, 8]. Typically, the method is given
a description of the parametric space of the algorithm (types and domains of the pa-
rameters), a set of training instances representative of the problem, and a computational
budget (e.g., a maximum number of algorithm runs). The goal of the method is to find
a high-performing parameter configuration for unseen instances of the same problem.
When the goal is not simply to obtain the best performance, but also to understand



the effect of parameters, the number of possible configurations that need to be evalu-
ated and analyzed may be extremely large. This is the case even if most configurations
are of little interest, since they produce poor results. In this paper, we propose to use
automatic configuration as a first step before analyzing the effect of parameters.

We use this approach to improve the performance and analyze the parameters of
pheromone-based heuristic column generation (ACO-HCG) for vehicle routing prob-
lems with black box feasibility (VRPBB) [11]. VRPBBs are an abstraction of rich ve-
hicle routing problems. In the VRPBB, the problem structure remains unchanged with
respect to a basic VRP, but a combinatorial side-problem needs to be solved to verify
the feasibility of each route. Examples of such problems combine routing and load-
ing [7] or routing and scheduling [12]. In the VRPBB, the combinatorial side-problem
to be solved for every route is considered to be unknown, but a black-box function al-
lowing to test the feasibility of a route is provided. An optimization procedure for the
VRPBB should be independent of the particular side-problem. An example of such an
optimization procedure is ACO-HCG, which combines ant colony optimization with
an exact solver. At each iteration, ants generate a set of feasible routes probabilisti-
cally according to pheromone values. A solution is obtained by solving a relaxed set
partitioning problem (RMPrelax) over the set of feasible routes. This solution is used
to update the pheromone information, biasing the construction of new feasible routes
by the ants in subsequent iterations. In addition, feasible routes are further improved
using local search. This procedure continues until a time limit is reached, and the final
solution is obtained by solving the integer set partitioning problem over the set of all
feasible routes ever generated.

In this paper, we extend ACO-HCG with new parameters formalizing algorithmic
design choices. Then, we use irace [10] to automatically find a high-performing config-
uration that improves the results of the original ACO-HCG. In particular, we improve
previous results of ACO-HCG in two VRPBB problems, the multi-pile VRP (MPVRP)
and the three-dimensional loading capacitated VRP (3L-CVRP). The new ACO-HCG
also improves the best-known results from the literature on the MPVRP and the 3L-
CVRP on several instances. Finally, we perform a basic sensitivity analysis of the pa-
rameters of ACO-HCG with the improved configuration generated by irace. This anal-
ysis shows that the new components play a significant role in the effectiveness of the
algorithm.

2 Vehicle Routing Problems with Black Box Feasibility

In this section, we present the capacitated vehicle routing problem (CVRP), extend it to
VRPs with black-box feasibility and present two example applications of the resulting
VRPBB.

2.1 The Capacitated Vehicle Routing Problem and Black-Box Feasibility

The CVRP [17] is defined on a complete undirected and weighted graph G = (V,E).
In the set of vertexes V = {0, 1, . . . , n}, 0 is the depot vertex and vertexes 1, . . . , n



correspond to the n customers that must be visited. The set of edges connecting every
pair of vertexes in V is given in E. With each edge (i, j) ∈ E s.t. i, j ∈ V, i 6= j is
associated a non-negative weight cij corresponding to the cost of traveling through edge
(i, j), i.e., from vertex i to j. A homogeneous fleet ofK vehicles is given for visiting the
customers. All vehicles have a limited capacity Q. Each customer i (i = 1, . . . , n) has
a given demand di. A solution to the CVRP corresponds to a set of routes. Each route is
a sequence of vertexes, where the first and last vertex always correspond to the depot,
while the remaining vertexes correspond to customers. No customer vertex may appear
more than once in a route. Finally, the goal is to find a set of routes Sol such that (i) the
number of routes in Sol does not exceed K; (ii) each customer i ∈ V \ {0} is visited
exactly once; (iii) the sum of the demands of the customers visited on a route does not
exceed the vehicle capacity Q; (iv) the total traveling cost obtained by summing the
weights of the used edges in minimized.

The VRPBB is based on the CVRP and a feasible solution to the VRPBB must
also be feasible for the CVRP. However, in addition to the CVRP constraints, routes
in the VRPBB must satisfy a fixed set of unknown constraints F . A route r is feasible
with respect to F if and only if it satisfies all the constraints in F . We suppose that a
deterministic black-box function is given to verify the feasibility of a route r w.r.t. F .
The function is considered to be computationally expensive in comparison to common
VRP-feasibility functions. In the following, we call a route black-box (BB)-feasible if
it is feasible w.r.t. F , VRP-feasible if it respects the CVRP constraints, and feasible if
it is VRP- and BB-feasible.

2.2 Applications of the VRPBB

In this paper, we consider two applications of the VRPBB, the MPVRP and the 3L-
CVRP, which combine a basic VRP with two different types of loading constraints. We
refer to [9] for an overview of such problems.

The Multi-Pile VRP. The MPVRP [4] is based on the CVRP, but there are no restric-
tions on the capacity nor on the number of vehicles (Q = ∞, K = n). However the
loading space of the vehicles has a limited length L, width W and height H . Further-
more, the loading space is partitioned into p piles. Each customer i demands a set ofmi

items Ii. Each item Iik (i = 1, . . . , n; k = 1, . . . ,mi) has a fixed width W , can take
two possible lengths lik ∈ {L/p, L} and has a height hik. A solution to the MPVRP
must respect the CVRP constraints and a feasible loading for the items of the visited
customers must exist. That is, no items must overlap (non-overlapping) and the items
must fit in the loading space (containment). When a customer is visited, all its items
must be directly accessible, i.e., its items are on top of the piles in the back of the
truck (sequential loading). Existing works on the MPVRP use metaheuristic and exact
approaches. Doerner et al. [4] propose heuristic approaches based on the fact that the
loading problem to be solved is a generalization of the P ||Cmax scheduling problem.
Tricoire et al. [18] propose an exact approach to solve the loading problem, and a vari-
able neighborhood search as well as a branch-and-cut method for the routing problem.



The Three-dimensional Loading VRP. In the 3L-CVRP [7], vehicles in a homoge-
neous fleet have a limited capacity Q. Additionally, the loading space of the vehicles
has a limited length L, a limited width W and a limited height H . With each customer
i is associated a demand di and a set Ii of mi items. An item Iik (i = 1, . . . , n; k =
1, . . . ,mi) corresponds to a three-dimensional box that is either fragile or non-fragile
and has width wik, height hik and length lik. A solution to the 3L-CVRP is feasible
if it respects the CVRP constraints and a feasible loading for the items of customers
on a route exists. In order to be feasible, no items in a loading may overlap (non-
overlapping) and all items need to fit into the volume of the vehicle (containment).
Also, each box must be supported by a surface corresponding to at least 75% of the
box’s bottom surface (support). Moreover, only fragile items may be placed on top of
fragile items (fragility). Finally, when visiting a customer, the unloading of the items
of this customer must not be hindered by items belonging to customers yet to be vis-
ited (LIFO policy). Most of the approaches proposed for the 3L-CVRP are metaheuris-
tics [7, 16, 6, 3, 22, 15], except for an exact approach proposed recently [14]. In these
approaches, the loading problem is typically solved using various packing heuristics.

3 Pheromone-based Heuristic Column Generation for the VRPBB

The pheromone-based heuristic column generation algorithm (ACO-HCG) analyzed
in this paper was originally proposed by Massen et al. [11]. It is based on the idea of
reformulating the VRPBB as a set partitioning problem (SPP). In this section, we briefly
explain this reformulation, summarize the ACO-HCG algorithm, and propose several
extensions.

3.1 Reformulation as Set Partitioning Problem

The VRPBB may be reformulated as a SPP, where the goal is to choose from the set
of all feasible routes (R) a subset of at most K routes such that each customer appears
exactly once and such that the total traveling cost is minimized. However, generating
the set of all feasible routes R is, in general, intractable due to the exponential number
of possible routes and the complexity of the black-box feasibility check. Therefore, a
restricted version of the problem (RMP) is solved using a restricted set of feasible routes
R∗. This problem can be further relaxed, resulting in two variants: the linear relaxation
of the RMP (called RMPrelax) or the integer RMP (called RMPint). In both, customers
may be visited more than once; thus, RMPint is also a reduced form of the SPP to be
solved. In ACO-HCG, collector ants generate new feasible routes that are iteratively
added toR∗.

3.2 Pheromone-based Heuristic Column Generation (ACO-HCG)

The ACO-HCG algorithm iterates over three steps: (i) collector ants generate new fea-
sible routes according to the pheromone information τ ; (ii) the new routes are added to
R∗ and the corresponding RMPrelax is solved, obtaining a solution Sol; and (iii) Sol is
used to update the pheromone information τ . After a time limit has been reached, the



SPP is solved over the set of feasible routes collected (R∗) to produce the final solution
to the VRPBB.

Collector Ants. Collector ants are based on the savings-based ants algorithm [13].
Each ant iteratively constructs a set of feasible routes, starting from an initial state where
each customer i (i = 1, . . . , n) is visited in a route of its own (0−i−0). At each step, the
ant constructs a setΩ of potential route merges, selects a merge fromΩ and executes the
merge. A merge corresponds to the concatenation of two routes 0−i1−i2−· · ·−ie−0
and 0−j1−j2−· · ·−jl−0 producing route 0−i1−i2−· · ·−ie−j1−j2−· · ·−jl−0.
That is, edges (ie, 0) and (0, j1) are dropped and replaced by a new edge (ie, j1). The
gain in cost resulting from this merge is computed as ηiej1 = cie0 + c0j1 − ciej1 .

The set Ω of merges considered by an ant is a subset of the set M of all merges
resulting in VRP-feasible routes (VRP-feasible merges). The ant computes the attrac-
tiveness of each merge h ∈M as

attractiveness(h) = ταij + ηβij (1)

where (i, j) is the edge being introduced in merge h. The merges inM are then ordered
by non-increasing attractiveness and considered one by one for inclusion inΩ. Since the
BB-feasibility check is computationally expensive the feasibility information for every
checked route is stored in a feasibility pool. If an ant encounters a merge resulting in a
route that might help to reduce the total traveling cost (see the original paper [11] for
more information) or it is unknown to the feasibility pool, then the ant checks the BB-
feasibility (using either the feasibility pool or the black-box function), and the merge
is added to Ω only if the route is BB-feasible. If the merge will not reduce the total
traveling cost but the resulting route is known to be BB-infeasible, then the merge is
nonetheless added toΩ, since this merge may allow discovering further feasible merges
that would remain undiscovered otherwise. The construction ofΩ stops once π feasible
merges have been included, or all merges inM have been considered. Finally, a merge is
selected fromΩ and executed using roulette-wheel selection based on the attractiveness
values. The ant stops its process once no further VRP-feasible merge is possible.

During the construction of Ω, the ants ”collect” routes and add them to R∗ only if
they are BB-feasible. In addition, these routes are post-optimized before being inserted
intoR∗ using a tabu search (TS) with infinite length tabu list using 2-opt and relocation
moves.

Pheromone Update. After all ants finish collecting routes for R∗, RMPrelax is
solved, and the pheromones are updated using the resulting solution Sol for every edge
(i, j) ∈ E using the formula τij = ρτij + σij∆τ . That is, for each edge (i, j) ∈ E,
the current quantity of pheromones is evaporated (ρ is the trail persistence) and new
pheromones are deposited. This quantity is relative to σij , the number of times an edge
(i, j) appears in Sol and a parameter ∆τ . Moreover, τij is not allowed to drop below
τmin.

Extensions of ACO-HCG. We propose several extensions that were not consid-
ered in the original paper. First, the original algorithm solves RMPrelax at each iteration.



Table 1. Parameters considered for automatic configuration

Parameter Domain Description

π [10, 50] ∈ N # (VRP and BB)-feasible merges in Ω
m [1, 10] ∈ N # ants executed per iteration
α [0, 20] ∈ N exp. factor for τ in merge attractiveness (Eq. 1)
β [0, 20] ∈ N exp. factor for η in merge attractiveness (Eq. 1)

∆τ [0.0, 1.0] ∈ R pheromone update constant
ρ [0, 1] ∈ R trail persistence

τmin [0, 1] ∈ R lower bound on pheromone level
useint {never, always, ν} solve RMPint instead of RMPrelax

ν [2, 10] ∈ N if useint == ν, solve RMPint instead of RMPrelax every ν
iterations

strictness { strict, liberal } strict / liberal ants
post-opt { ILS, TS } ILS / TS for post-optimization

op {+, ·} use addition/multiplication operator in Eq. 1

Here, we consider solving RMPint instead, in order to obtain an non-fractional solution
at the expense of more computation time. This component is controlled by parameter
useint = {never, always, ν}. When useint = ν, RMPint is only used for some iterations,
concretely, every ν iterations. Second, we implement iterated local search (ILS) using
2-opt, relocation and 4-opt double-bridge moves, as an alternative post-optimization
method to the tabu search (TS) proposed in the original ACO-HCG. Third, we con-
sider a stricter variant of the ants (“strict ants”) that only include merges in Ω if they
are both VRP- and BB-feasible. As explained above, the original ants, which we call
“liberal”, included BB-infeasible merges in Ω in some circumstances. Fourth, when
computing the attractiveness (Eq. 1), the original algorithm sums the pheromone and
heuristic values, which is fast to compute but if the ranges of the two values are very
different then one will completely dominate the other. Here, we propose to use the prod-
uct attractiveness(h) = ταij · η

β
ij , which is potentially slower, but it is more robust if τα

and ηβ have different ranges. These two alternatives are controlled by parameter op. A
summary of all the algorithmic parameters and their domains is given in Table 1.

4 Experimental Setup

We analyze the components of ACO-HCG in a novel way. First, we find a high-performing
parameter configuration by means of irace, an automatic algorithm configuration tool.
Second, we examine the effect of each parameter starting from this high-performing
configuration.

ACO-HCG was implemented in C++, compiled using gcc 4.4.6 and uses CPLEX
12.4 as the MILP solver. The black box for the MPVRP was provided by Tricoire et
al. [18]. We use their exact approach with a time limit of 5 seconds. The black box used
for the 3L-CVRP is a reimplementation of the loading approach proposed by Bort-



feldt [3] using the same parameters. Experiments were run on a single core of an AMD
Opteron 6272 CPU (2.1 GHz, 16 MB L2/L3 cache size) running under Cluster Rocks
Linux version 6/CentOS 6.3, 64bits.

As for the automatic algorithm configuration tool, we use irace [10], a publicly
available implementation of Iterated F-Race [1]. Iterated F-Race starts by sampling a
number of parameter configurations of a given algorithm uniformly at random. Then,
at each iteration, it selects a set of elite configurations using a racing procedure and the
non-parametric Friedman test. This racing procedure runs the algorithm configurations
iteratively on a sequence of (training) problem instances, and discards configurations as
soon as there is enough statistical evidence that they perform worse than the best one.
After the race, the elite configurations are used to bias a local sampling model. The next
iteration starts by sampling new configurations from this model, and racing is applied
to these configurations together with the previous elite configurations. This procedure
is repeated until a given budget of runs is exhausted. In this work, we tuned ACO-HCG
using a budget of 5 000 runs.

Ideally, an automatic configuration method should produce an algorithm configura-
tion that performs well on unseen instances of the same problem. In other words, the
method should generalize over the given set of instances, and not overtune the algorithm
to those specific instances. To prevent such overtuning, we use training instances for the
tuning process that are different from the test instances used for comparison and in the
analysis of parameters. The test instances are benchmark instances from the literature
and available online: see [20] for MPVRP, and [19] for 3L-CVRP.

The training instances were generated by perturbing the benchmark instances from
the literature. Only slight perturbations of some customer properties were allowed in
order to not destroy the underlying problem structure. Each customer property was
perturbed with a probability of 95%. A perturbation replaces the value of the property
by current value + r · maxprop, where r is a number selected uniformly at random in
the interval [−δ, δ] and maxprop is the maximal value for the considered property in
the original instance. Different values for δ were considered (δ ∈ {0.05, 0.1, 0.15} for
MPVRP, and δ ∈ {0.1, 0.15} for 3L-CVRP).

For the MPVRP instances only predefined types of items are available [4], and,
hence, the demand of a customer corresponds to the number of items demanded per
type. The following customer properties were considered for perturbation: x-coordinate
and demand of one randomly selected type of item. For the 3L-CVRP, the following
customer properties were considered: x-coordinate, demand, randomly selected dimen-
sion of randomly selected item, fragility of randomly selected item. Five different com-
binations of these properties were considered.

With each generated instance is associated a time limit (on the route generation
phase). This time limit corresponds to the limit associated with the original instance in
[18] for the MPVRP (1800 seconds) and [7] (1800, 3600 and 7200 seconds based on
the instance size) for the 3L-CVRP.



5 Experimental Results

In this section, we first compare the parameter configuration obtained automatically
using irace with the manual configuration of ACO-HCG. Then, we analyze the param-
eters of ACO-HCG one by one, starting from the automatically obtained configuration.
As mentioned above, the automatic configuration uses a set of training instances, gen-
erated by us, and the comparison and analysis uses a different set of test instances
from the literature. The performance of the algorithm is measured by computing for
each instance the relative percentage deviation (%-deviation) with respect to the best-
known solution from the literature. We only consider best-known solutions obtained
with the same loading algorithms that we use here as black-box functions ([18, 11] for
the MPVRP and [3, 11] for the 3L-CVRP). We call these solutions best-bb in the re-
mainder of this paper. The %-deviation is computed as 100 · z−zbest

zbest
, where z is the

solution cost obtained by a run of the algorithm and zbest is the best-bb solution cost for
the same instance. We use the Wilcoxon signed-rank test with confidence level 95% to
assess the statistical significance of the results.

5.1 Manual vs. automatic parameter configurations

We carry out the automatic configuration of ACO-HCG using irace, the parameter do-
mains given in Table 1, and the set of training instances. A run of irace stops after 5 000
runs of ACO-HCG. We run irace two times, once for the MPVRP training instances and
another time for the 3L-CVRP training instances. Thus, we obtain two ”automatic” con-
figurations of ACO-HCG. Table 2 shows these automatic configurations and the two
”manual” configurations that were reported in the original paper [11]. However, two
parameters of the original algorithm are different in this manual configuration. First, in
the original paper a sum (op = {+}) was used for computing attractiveness. This has
been changed to a multiplication (op = {·}) in order to be coherent with the standard
attractiveness formulation used in the ACO literature [5]. Second, in the original algo-
rithm the parameter π was implicitly defined in terms of two other parameters and the
instance size, while here π is a single parameter, which simplifies the analysis. The set-
ting of π in the manual configuration is a close approximation to the value that would
be obtained given the default values of the two parameters replaced and typical instance
sizes. The manual configurations were based on preliminary experiments and standard
ACO parameters, and they were found to be competitive with existing approaches.

Some notable differences between the settings of the automatic configurations and
the manual ones are that the former have larger value of β, a larger number of ants (m),
a lower pheromone persistence (ρ), they solve RMPint in some iterations (ν), and the
ants are strict instead of liberal. The last two parameter settings are actually extensions
of the ACO-HCG that we propose in this paper, and selected by irace on its own. In
fact, we also propose ILS as an alternative post-optimization method (post-opt), but
irace did not select it. The parametric analysis in the next section indeed indicates that
ILS does not bring any improvement over TS in any of the two benchmark problems.

The automatic and manual configurations of ACO-HCG are compared in Fig. 1 in
terms of %-deviation from the best-bb cost on the test instances. Each point in the plot
shows the mean %-deviation over 20 independent runs (with different random seeds)



Table 2. Parameter configurations of ACO-HCG.

Problem Config. π m α β ∆τ ρ τmin useint (ν) strict. post-opt op

MPVRP Manual 13 1 5 5 0.15 0.95 0.20 never liberal TS mult
Automatic 10 9 1 10 0.69 0.34 0.79 ν = 7 strict TS mult

3L-CVRP Manual 13 5 5 5 0.15 0.95 0.20 never liberal TS mult
Automatic 41 10 3 9 0.66 0.45 0.29 ν = 6 strict TS mult

on the same test instance. The two configurations perform equally on the same instance
if the point is on the diagonal, the automatic configuration performs better if the point
is under the diagonal, and the manual configuration performs better if the point is above
the diagonal. Moreover, the symbols denote whether the differences observed are sta-
tistically significant.

For the MPVRP (Fig. 1(a)), the improvement of the automatic configuration over
the manual one is considerable. In particular, all the differences are statistically sig-
nificant. Moreover, for many instances, the automatic configuration obtains an average
result that is better than the best-bb solution. For the 3L-CVRP (Fig. 1(b)), the im-
provement is smaller. Nonetheless, the automatic configuration is never worse than the
manual configuration and it is significantly better on a few instances. In Table 3 the
manual and automatic configuration are compared to the best known solutions in liter-
ature using all kinds of loading algorithms (and thus possibly obtained using loading
algorithms different from the ones used as black box functions in this work). The au-
tomatic configuration is able to find new best solutions for 16 out of the 21 MPVRP
instances and 3 out of the 27 3L-CVRP instances. Complete tables with worst values
and standard deviation are provided as supplementary material [21]

5.2 Experimental analysis of the ACO-HCG parameters

In this section, we systematically examine several algorithm parameters. In contrast to
how such parametric analyses are carried out in the literature, we adopt a different ap-
proach that exploits the benefits of automatic configuration tools. In particular, we do
not consider a fully-factorial experimental design, since the number of parameters and
the computation time required by each run make such an approach intractable. Instead,
we start from the high-performing parameter configuration automatically obtained in
the previous section, and examine parameter settings that disable or replace one algo-
rithmic component at a time.

Pheromone information (α). By setting α = 0, we disable the influence of the
pheromone information. The result is a noticeable deterioration in quality in most MP-
VRP instances (Fig 2(a)) and some 3L-CVRP instances (Fig 2(e)). This suggests that
the pheromone information plays a positive role in the performance of the algorithm,
probably helping to diversify the routes produced by the ants.

Savings heuristic (β). By setting β = 0, we disable the use of the savings heuristic
η in the attractiveness equation. The savings heuristic guides the ants to build cost-
efficient routes, and, hence, disabling it leads to a substantial quality deterioration in
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Fig. 1. Comparison between manual and automatic configuration. Each point gives the mean %-
deviation from the best-bb solution over 20 runs with different random seed on the same test
instance. The symbols denote whether there is a statistically significant difference (5) or not (2),
or all the runs obtained the same cost (O).

both problems (MPVRP, Fig. 2(b), and 3L-CVRP, Fig. 2(f)). For small instances of the
3L-CVRP, however, the differences are typically minor. This is due to the high value
for parameter π. In fact, for small instances with only few customers, setting π, that is,
the number of feasible merges in Ω, to a high value, results in most possible merges
being included in Ω. These are then checked for feasibility and added toR∗. However,
for large instances, the setting of parameter π excludes many interesting merges that
would have a high heuristic value if β 6= 0. In summary, the savings heuristic remains
essential for the generation of high-quality routes.

Learning mechanism (ρ). By setting ρ = 0, the pheromones are reset at every
iteration, and only the amount deposited in the current iteration has an effect. Hence,
this setting disables the learning mechanism of ACO and forces the ants to focus on
the solution found in the current iteration. Given that the results do not show a clear
effect of the learning mechanism (Fig. 2(d) and 2(h)), but that completely disabling
the pheromone information (α = 0, as discussed above) does deteriorate quality, we
conclude that the pheromone information provides a diversification mechanism rather
than learning the best edges over time.

Strict vs. liberal ants. Whereas strict ants may only execute merges resulting in
VRP- and BB-feasible routes, liberal ants may also execute merges resulting in only
VRP-feasible routes. The rationale of liberal ants is that BB-infeasible routes might be
merged in order to produce BB-feasible routes. This, of course, depends on the black
box at hand. In the case of the MPVRP, such a situation cannot arise and, hence, strict
ants produce much better results (Fig. 2(c)). While for the 3L-CVRP two infeasible



routes can theoretically be concatenated to produce a feasible route, such a situation
does not seem to occur frequently in the benchmark instances available (Fig. 2(g)).
Thus, the choice of strict ants rather than liberal ants in the automatic configuration
seems to be justified.

Sum vs. multiplication in attractiveness equation. The results clearly worsen
when using a sum (op = +) in the attractiveness equation. Since the values of the sav-
ings heuristic are much larger than the pheromone values, summing both neglects the
effect of the pheromones. In fact, the plots (available as supplementary material [21])
are almost identical to those where the pheromone information is disabled (α = 0,
Fig 2(a) and 2(e)). Therefore, the use of multiplication is recommended.

We also analyzed other parameters of ACO-HCG, however, for the sake of con-
ciseness, we only briefly summarize our findings here, and provide the full plots as
supplementary material [21]. In particular, we analyzed the parameter useint, which
controls whether the solution used to update the pheromone information is obtained
by solving RMPint or RMPrelax. For the MPVRP, while never using the integer solution
does not have a significant effect on most instances, always using it slightly deterio-
rates the quality in some instances. For the 3L-CVRP, it does not matter whether we
use RMPrelax or RMPint to update the pheromones. When comparing ILS vs. TS as the
post-optimization method, we observe that, in the MPVRP, solution quality does dete-
riorate in some instances when using ILS instead of TS, and in the 3L-CVRP, a slight
deterioration can be observed on a couple of instances. Finally, if the number of ants is
set to one (m = 1), results improve slightly on a few instances and get slightly worse
in others. In the case of the 3L-CVRP, setting m = 1 slightly deteriorates quality in a
majority of the instances.

6 Conclusion

In this paper, we carried out a parametric analysis of ACO-HCG for the VRPBB in a
novel way. As a first step, we obtained a high-performing configuration of ACO-HCG
by means of automatic configuration for two variants of the VRPBB, namely, MPVRP
and 3L-CVRP. This automatic configuration significantly improves the results obtained
by the default configuration of ACO-HCG. The default configuration was developed
based on intuition and a few preliminary experiments, and it was found to be competi-
tive with the state of the art. However, due to the long computation times required and
the large number of parameters, further improving the parameter configuration by tra-
ditional methods was deemed intractable. Automatic configuration tools allowed us to
overcome this difficulty and test new algorithmic components. In fact, the new config-
uration is able to improve the best-known solutions on many instances.

As a second step, we systematically analyzed the parameters of ACO-HCG, starting
from the automatically-found configuration, and disabling or replacing one component
at a time to observe its effect on quality. In this way, we identified four components
that have a large effect on the results, namely, the pheromone information, the savings
heuristic, the strictness of the ants when considering feasible routes, and the equation
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used for computing the attractiveness. Moreover, although the use of pheromone infor-
mation is necessary to complement the savings heuristic, we also determined that the
learning mechanism of ACO does not have a strong effect. These insights should lead
to future improvements in the algorithm.

The analysis methodology used here can easily be applied to other algorithms (using
other automatic configuration tools besides irace). We expect that the larger improve-
ments and best insights will be obtained when analyzing hybrid algorithms with many
parameters that require long runs. In that case, the default configuration is probably far
from optimal and previous studies may have missed insights that are only relevant for
high-performing parameter configurations.

Future work should consider new algorithmic components that may improve ACO-
HCG, other black-box functions found in the literature, and the effect of the parameters
on the computation time required by the algorithm. We will also perform a more elabo-
rate sensitivity analysis of the parameters, evaluating the influence of variations in their
values.
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