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Abstract

Several grammar-based genetic programming algorithms have been proposed in the literature to automatically generate heuristics
for hard optimization problems. These approaches specify the algorithmic building blocks and the way in which they can be
combined in a grammar; the best heuristic for the problem being tackled is found by an evolutionary algorithm that searches in the
algorithm design space defined by the grammar.

In this work, we propose a novel representation of the grammar by a sequence of categorical, integer, and real-valued parameters.
We then use a tool for automatic algorithm configuration to search for the best algorithm for the problem at hand. Our experimental
evaluation on the one-dimensional bin packing problem and the permutation flowshop problem with weighted tardiness objective
shows that the proposed approach produces better algorithms than grammatical evolution, a well-established variant of grammar-
based genetic programming. The reasons behind such improvement lie both in the representation proposed, as well as in the method
used to search the algorithm design space.
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1. Introduction

Recent advances in the development of methods for the au-
tomatic configuration of optimization algorithms (also known
as offline configuration) have shown the benefits of configur-
ing optimization algorithms to specific problems [1–9], and
several works in the literature use such methods to generate
new optimization algorithms [10, 11]. We call these latter ap-
proaches top-down approaches for automatic algorithm design,
since they use a parametrized algorithmic framework to pro-
duce specific algorithms. Such frameworks are normally de-
signed starting from a general (and usually complex) procedure
and integrating alternative high-level algorithm components as
fully-functioning blocks. In such a top-down approach, the pa-
rameter space is easily defined according to these alternative
components. However, the flexibility of the framework is de-
termined by the complexity of the general procedure.

A different, bottom-up approach for automatic algorithm de-
sign is used by grammar-based genetic programming [12–17].
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In this approach, the algorithm design space is described by a
set of production rules, and valid algorithms are instantiated by
repeated applications of these rules. The benefit of a bottom-up
approach is an increased flexibility when defining valid combi-
nations of algorithmic components. Moreover, thanks to this
flexibility, algorithmic components in bottom-up approaches
are often more fine-grained than in top-down approaches. So
far, the search for the best instantiation of the grammar has been
done by genetic programming and other evolutionary methods.

In this paper, we investigate whether automatic algorithm
configuration methods can be applied in a bottom-up approach.
We answer this question in two steps. First, we replace the
evolutionary algorithm in grammatical evolution (GE) [18], a
type of grammar-based genetic programming, by an automatic
configuration method, irace [6], using the same representation
of the grammar as in the evolutionary algorithm. Second, we
propose a method to generate a parameter space from a gram-
mar, such that instantiations of the grammar can be represented
by parameter configurations, which are more natural for auto-
matic configuration methods. We compare these proposals with
a pure GE method recently tested for the one-dimensional bin
packing problem (1BPP) [17].

Experimental results show that irace using the parameter
space generated by our method finds better algorithms than the
GE method. We confirm these results by extending our analysis
to the permutation flowshop with weighted tardiness problem
(PFSP-WT).

This paper is structured as follows. First, we examine related
works and we describe the GE method. Second, we explain
our proposal for generating parameter spaces from a grammar.
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Third, we apply our proposal to the 1BPP, compare it to the GE
method from [17] and test it on a new, more challenging case
study on the PFSP-WT. Finally, we present our conclusions and
discuss the new research directions opened by this paper.

2. Top-down vs. Bottom-up Approaches for Automatic Al-
gorithm Design

2.1. Top-down Approaches

Automatic algorithm configuration methods were conceived
for tuning the parameters of stochastic optimization algorithms
given a set of training instances representative of the problem of
interest. These methods allow algorithm designers to test many
more parameter configurations than what is typically feasible
when algorithms are tuned by hand in an ad-hoc manner. More-
over, automatic algorithm configuration methods avoid inherent
biases of human designers when selecting which parameters to
tune and which experiments to carry out.

When designing an optimization algorithm for a specific
problem, algorithm designers are likely to implement alterna-
tive design choices (either new or coming from the literature)
for further testing. It is only a small step to implement these
design choices as parameters within an algorithm [19]. Such
an algorithm quickly becomes an algorithm framework, with
components that represent alternative design choices exposed
as parameters of the framework. A particular instantiation of
the parameters of such a framework leads to the selection of
specific design choices and, hence, a specific algorithm. By ap-
plying automatic configuration to algorithm frameworks, it is
therefore possible to automatically design algorithms for spe-
cific problems. We call this method a top-down approach, and
we can find various examples in the literature.

KhudaBukhsh et al. [10] built a parametrized algorithmic
framework for the satisfiability (SAT) problem from compo-
nents of algorithms that had shown good results in previous
editions of the SAT competition. By setting the parameters of
the framework to specific values, they could instantiate various
successful SAT solvers and generate new variants. They used
ParamILS [3] to find the best variant to tackle specific types
of SAT instances. The multi-objective ant colony optimization
(MOACO) framework [11] follows a similar idea. Unique al-
gorithmic components of various MOACO algorithms from the
literature have been identified and incorporated into a common
algorithmic framework, where alternative components may be
selected by means of parameters. This framework was able
to instantiate most of the MOACO algorithms from the litera-
ture and to generate hundreds of new algorithm designs. Using
irace [6], it was possible to find a configuration of the frame-
work that outperformed the MOACO algorithms from the liter-
ature for the bi-objective travelling salesman problem.

2.2. Bottom-up Approaches

A bottom-up approach combines algorithmic components,
which can range from a single operator to fully-functioning pro-
cedures, to form valid expressions in a language, which can be

either pseudo-code or a specific programming language. In con-
trast to top-down approaches, in a bottom-up approach there
is no need for a general algorithm framework, where many
higher-level alternative design choices co-exist. This provides a
greater flexibility when defining the space of valid algorithms,
but it complicates the representation of valid algorithms and the
search for the best one.

In bottom-up approaches, the space of valid algorithms is
often given as a context-free grammar, that is, a set of pro-
duction rules that describe how terminal and non-terminal
symbols can be combined to produce valid sentences in the
language. Fig. 2 shows an example grammar expressed in
Backus-Naur Form (BNF), where each production rule is of the
form <non-terminal> ::= expression . Each rule describes
how the non-terminal symbol on the left-hand side can be re-
placed by the expression on the right-hand side. Expressions
are strings of terminal and/or non-terminal symbols. If there are
alternative strings of symbols for the replacement of the non ter-
minal on the left-hand side, the alternative strings are separated
by the symbol “|”.

How to search for the best algorithm in the design space de-
fined by the grammar and how to represent the sequence of
derivation rules that represent an algorithm is the object of dif-
ferent methodologies in genetic programming (GP) [15, 20].
In the context of generating stochastic optimization algorithms,
Caseau et al. [12] design hybrid large neighborhood search al-
gorithms for vehicle routing problems by using a genetic al-
gorithm that applies crossover and mutation to a list of alge-
braic terms extracted from the grammar. Fukunaga [13, 14]
uses a strongly-typed genetic programming algorithm to evolve
Lisp-like S-expressions that represent local search heuristics for
SAT. Three recent works [16, 17, 21] use grammatical evolu-
tion (GE) [18], which is a variant of GP that represents an in-
stantiation of the grammar as a sequence of integers. Given its
simplicity and its recent popularity for the automatic bottom-up
design of algorithms, we explain this latter approach in more
detail in the following section. In a hyper-heuristics context,
the bottom-up approaches for generating algorithms are also re-
ferred to as “heuristic generation technologies”; for a review of
these we refer to the recent survey paper [22].

2.3. Grammatical Evolution
In GE, a sentence (in our case, an algorithm) is instantiated

from a grammar by a sequence of integers called codons. The
codons encode the sequence of derivation rules applied to gen-
erate the sentence. Given a grammar and a specific sequence of
integers, the actual sentence is obtained as follows. A special
non-terminal symbol (e.g., <start>) is replaced first by the ex-
pression on the right-hand size of its corresponding derivation
rule. Then, the left-most non-terminal in the current expres-
sion is replaced by applying its corresponding derivation rule.
If there are alternative rules for the non-terminal, a codon from
the sequence is consumed. The codon integer value, modulo the
number of alternatives, determines which alternative rule is ap-
plied. This process continues until the derivation is complete,
that is, there are no more non-terminals to be replaced. Once
the derivation is complete, the unused codons are discarded. If
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all codons are consumed before the derivation is complete, the
process continues from the first codon, an operation known as
“wrapping around” the sequence of codons. A maximum num-
ber of wraps limits the number of times that each rule can be
applied, and, thus, the length of the sentence (the algorithm)
encoded by the codons. If this limit is reached, the algorithm
represented by this sequence of codons is considered invalid.

Although the method that searches for the best sentence in
GE is usually an evolutionary algorithm (EA), other search
methods could, in principle, use the same codon-based rep-
resentation. A related question is whether the codon-based
representation is indeed the most appropriate for generating
algorithms. Automatic algorithm configuration methods are
able to handle complex parametric spaces including categori-
cal, numerical and conditional parameters, whereas the codon-
representation is restricted to categorical alternatives (although
the categories are represented by integers, there is no implicit
order or distance among them). On the other hand, it is not
completely obvious how to obtain a parametric space that rep-
resents a given grammar.

3. Methods

3.1. Automatic Configuration Methods as Search Methods in
Grammatical Evolution

GE uses an evolutionary algorithm (EA) to search in the
space of codon values. A recent example of such EA [17] uses
fitness-proportionate selection, one-point cross-over, point mu-
tation, a duplication operator (which selects and inserts a copy
of a random subsequence of codons at the penultimate posi-
tion of the sequence), and a pruning operator (which removes
unused codons from the sequence). These operators are ap-
plied iteratively to replace the 90% worst individuals from the
population at each generation. The length of each sequence of
codons is variable. Each individual encodes an algorithm, and
the individual is evaluated by running it on a single training in-
stance and assigning a fitness to the best solution found. All
individuals are re-evaluated at each generation using a different
initial solution in order to take into account the stochasticity of
the algorithms so that good individuals show good performance
in multiple independent runs. Moreover, evaluation runs within
each generation use the same initial solution in order to reduce
the variance.

In principle, we could replace the above EA with any other
search method, for example, those developed for automatic
algorithm configuration. Automatic algorithm configuration
methods are designed to handle not only the stochasticity of the
algorithm being tuned, but also the heterogeneity of multiple
training instances. In fact, the objective of automatic algorithm
configuration methods is not to find the highest-performing al-
gorithm for the given training instances, but an algorithm that
maximizes the performance over unseen instances of the same
problem.

We test this idea by replacing the EA in GE with irace [5, 6].
irace is an automatic algorithm configuration method that al-
ternates between racing configurations to discard the worst-
performing ones and sampling new candidate configurations

from a probabilistic model. Within each race, candidate config-
urations are run on one instance at a time and a statistical test is
used to discard configurations whenever there is sufficient sta-
tistical evidence that they perform worse than the best one. The
race stops when only a small number of configurations remains
in the race or a budget of runs assigned to this race is consumed.
The best configurations found are used to adjust a probabilistic
model, from which new configurations are sampled. A new
race starts using the best configurations from the previous race
and the newly sampled ones. This procedure continues until a
maximum budget of runs is consumed.

In order to replace the EA in GE with irace, we use param-
eters to represent the codons. In the original work [17], each
codon is a consecutive group of 8 bits in the genome; hence we
use categorical parameters that can take any value between 0
and 28 − 1. The rationale for using categorical values to rep-
resent the codons is that the values of the codons are simply
labels for the alternative rules in the grammar and they do not
have any implicit order. In the experiments with irace we will
use 30 parameters, which is the median of the range of [10, 50]
codons used in the original GE [17]. Sections 5 and 6 compare
these two approaches on the 1BPP and on the PFSP-WT.

3.2. From Grammars to Parameters

Although the codon-based representation may be used di-
rectly in an automatic configuration method, this representation
is characterized by a high decoupling between the sequence of
codons describing the rule application and the algorithm that
is produced. The decoupling is due to several factors: 1) the
modulo operations for mapping a codon to one of the alterna-
tive rules to be applied makes the mapping non injective, i.e.,
there are many sequences of codons that encode the same al-
gorithm; 2) the wrapping of the sequence implies that the same
codon is mapped to different rules for the derivation of the al-
gorithm; 3) part of the sequence may not be needed to com-
plete the derivation of the algorithm, which leads to different
sequences mapping to the same algorithm; and 4) deriving the
left-most non-terminal symbol in the expression implies that
the value of a codon determines also the meaning of all sub-
sequent codons in the sequence [15]. Moreover, an automatic
configuration method using a codon-based representation loses
one of the advantages of such methods, i.e., the ability to handle
complex parametric spaces with both numerical and categorical
parameters.

We propose next a method for mapping the derivations in a
grammar to a parameter space. Our method first creates a pa-
rameter space representation for a given grammar. This param-
eter space representation can then be used to generate param-
eter configurations that correspond to specific instantiations of
the grammar. To map the derivations in a grammar into a list
of parameters, we go through two phases. In the first one, the
grammar, which is usually designed to be clear for the human
designer, is preprocessed to simplify some derivations. In the
second phase we generate the actual parameters from the sim-
plified grammar.
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1: x := randomized_first_fit()
2: for i = 1 to 100 iterations do
3: x∗ := ig_step(x)
4: if fitness(x∗) < fitness(x) then
5: x := x∗

6: end if
7: end for
8: return x

Fig. 1. Algorithmic scheme of the IG for the 1BPP.

1: <start> ::= <select_bins> remove_items_from_bins() <repack>
2: <select_bins> ::= <type> | <type> <select_bins>
3: <type> ::= highest_filled(<num>, <ignore>, <remove>)
4: | lowest_filled(<num>, <ignore>, <remove>)
5: | random_bins(<num>, <ignore>, <remove>)
6: | gap_lessthan(<num>, <threshold>, <ignore>, <remove>)
7: | num_of_items(<num>, <numitems>, <ignore>, <remove>)
8: <num> ::= 2 | 5 | 10 | 20 | 50
9: <threshold> ::= average | minimum | maximum

10: <numitems> ::= 1 | 2 | 3 | 4 | 5 | 6
11: <ignore> ::= 0.995 | 0.997 | 0.999 | 1.0 | 1.1
12: <remove> ::= ALL | ONE
13: <repack> ::= best-fit-decreasing | worst-fit-decreasing
14: | first-fit-decreasing

Fig. 2. Grammar for generating ig_step in Fig. 1 for the 1BPP [17].

3.2.1. Preprocessing
The preprocessing phase consists of the following steps: a)

rules that contain the same non-terminal symbol on both sides
of the rule (recursive rules) are simplified to reduce the number
of generated parameters; b) rules that contain no actual alterna-
tives are removed by replacing the left-side non-terminal sym-
bol by the right-side expression in every other rule; and c) rules
that are defined but are not reachable through a derivation from
the <start> non-terminal are removed. After the preprocess-
ing phase, the grammar consists of non-terminal symbols that
expand to alternatives of terminal and non-terminal symbols.
From such a preprocessed grammar, the parameters are gener-
ated in the subsequent translation phase. The preprocessing is
useful as it often reduces the number of parameters required.

3.2.2. Translation to Parameters
In the second phase, we traverse the tree of derivations with

a depth first search. Each node is identified as one of the fol-
lowing types: terminals, rules that contain alternative choices,
rules that contain numerical ranges, and recursive rules. From
each rule we will produce one or more parameters.

The grammar in Fig. 2 describes how to build different
heuristics for an IG algorithm (see algorithm in Fig. 1) for the
1BPP. The grammar will be explained in detail in Section 5.
In the following, we will use this grammar as an example to
explain how the different rules are mapped to parameters.

Alternative choices. Rules with alternative choices are repre-
sented as categorical parameters. This is specially natural in
the case of rules that consist only of alternative terminals, such
as (see line 9 of Fig. 2):

<threshold> ::= average | minimum | maximum

Numerical ranges. Numeric terminals, such as (see line 10 of
Fig. 2):

<numitems> ::= 1 | 2 | 3 | 4 | 5 | 6

can be represented as categorical parameters or more naturally
by numerical parameters with a defined range.

Recursive rules. The only difficulty appears when a rule can
be applied more than once. In such a case, each application
of the rule requires its own parameter. While theoretically in-
finitely many applications of the rule may seem possible, in any

instantiation of the grammar, the number of repetitions must be
finite. GE encodes this limit in the number of wrappings. In
our method we use an explicit limit on the number of repeti-
tions per rule. This limits the number of parameters required
to describe such rules and also the length of the generated al-
gorithm. In fact, when generating algorithms from grammars,
such rules are rarely applied more than a small number of times,
thus, the limit can also be small.

Since generating parameters for recursive rules is the non-
trivial case, we explain it in more detail in the following. First
of all, after the preprocessing phase, only rules with the same
non-terminal symbol on the left-hand side and on the right-hand
side are recognized as recursive rules. (More complex gram-
mars with cycles that span across multiple derivation rules are
currently not handled and we leave such extension for future
work). To map the recursive rule to parameters allowing for at
most n applications of the rule, we loop on the rule n − 1 times,
and at the n-th visit, we restrict the values that can be assumed
by the parameters to avoid further applications. Suppose we
want to limit to n = 3 applications the following rules:

<select_bins> ::= <type> | <type> <select_bins>
<type> ::= highest_filled(...)

| lowest_filled(...)

for better clarity we will rename the terminal and non terminal
symbols as in the grammar below:

<A> ::= <B> | <B> <A>
<B> ::= c | d

After the first visit to the recursive rule, we generate from the
first derivation, a categorical parameter A1 that can assume the
values B and BA. To translate the second rule (<B> ::= c | d),
two categorical parameters B1 and B2 are generated with domain
c and d. The parameter B1 will be taken in consideration only
if A1 assumes the value B, whereas B2 will be taken in consider-
ation only if A1 assumes the value BA. Automatic configuration
methods, such as irace, often handle such conditional parame-
ters, that is, parameters only enabled for certain values of other
parameters, in order to reduce the size of the parameter space.

After the second visit to the recursive rule, three additional
parameters are generated. A categorical parameter A2 will en-
code the second level of recursion; it will be considered only if
A1 assumes the value BA, and it will have the same domain as
A1. Two further categorical parameters B3 and B4 will encode
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the choice between c and d for the two possible values in the
domain of A2.

Each further level of recursion will produce three further pa-
rameters. Such number can be reduced by changing the current
grammar into an equivalent one:

<A> ::= <B> <T>
<T> ::= "" | <B> <T>
<B> ::= c | d

where "" is the empty string that allows to stop the recursion.
For such grammar, three visits to the recursive rule will pro-
duce five parameters instead of nine. The reduction becomes
more important with more complex grammars and more levels
of recursion. The five parameters generated are the following.
At the first visit of the recursive rule the categorical parameters
B1 and T1 are generated. The first can assume the values c and
d, whereas the second one has for domain {"", BT}. At the
second visit of the recursive rule, two analogous parameters B2
and T2 will be generated, and they will be taken in consideration
only if T1 assumes a value different from "". At the third and
last visit of the recursive rule only a parameter B3 will be gen-
erated, which will be taken in consideration only if T2 assumes
a value different from "".

The example discussed above is actually a particular case of
recursion that expresses the concept that a valid program con-
tains a list of at least one <B>. In the general case, all rules
in the form <rule> ::= x | x <rule> | x ..., where x is a
terminal or non-terminal symbol that appears alone and in each
alternative, could be simplified to reduce the number of param-
eters generated.

Mapping the derivations in the grammar to parameters is im-
plemented by grammar2code, a tool that takes as input a gram-
mar and outputs the list of parameters as required by automatic
algorithm configuration methods. In our previous work [23],
this translation was done by hand. grammar2code is also able
to instantiate the source code of the target algorithm given a
specific parameter configuration and a grammar. This means
that once the algorithm designer defines the grammar and a list
of tuning instances, the process of designing alternative imple-
mentations, compiling them, testing them, and evaluating their
performances to choose the best algorithmic design is com-
pletely automated.

The grammar can describe algorithms in pseudo-code or di-
rectly in a programming language ready to be compiled or in-
terpreted. In this paper, the grammars are presented in pseudo-
code for better clarity, whereas in the actual experiments they
generate directly algorithms in Python (for the 1BPP) and C++

(for the PFSP-WT) without the need for further translations.

4. Experimental Evaluation

In the experimental evaluation, we compare three methods to
generate algorithms from a grammar:

• evolutionary corresponds to the GE approach used
by Burke et al. [17], that is, the grammar is linearized into
a sequence of codons represented as 8-bit integers, and the

search is performed by an EA. The EA has a population
size of 50 and the number of generations is set to 50 for
a total of 2500 function evaluations (algorithm runs). At
each generation, 90% of the population is replaced by new
offspring as follows. First, two individuals generate two
offspring individuals by one point crossover with proba-
bility 0.9; otherwise, the two individuals are cloned as the
new offspring. Second, the offspring individuals undergo
mutation, duplication, and pruning of the codons with a
probability of 0.001 for each operation. Each individual
is evaluated on a single training instance. The EA in the
published paper [17] was not completely specified; in par-
ticular, it is not clear how to handle invalid sequences of
codons. In our implementation, if a genetic operator gen-
erates an individual with an invalid codon-sequence, we
discard the individual and reapply the operator. Moreover,
the original proposal says that new individuals are gener-
ated in pairs. It also says that 90% of a population of 50
are replaced at each iteration, that is, 45 new individuals
need to be generated per iteration. In our implementation,
we generate 23 pairs of individuals and discard the last in-
dividual generated without evaluating it.

• irace-ge: We adopt the linearization used in GE, and we
map the codons in the genotype to categorical parameters
that can assume 28 different values. Then we use irace to
search an effective algorithm for the instances in the train-
ing set. The tuning budget, corresponding to the function
evaluations in evolutionary is set to 2500 algorithm runs.
Since irace-ge uses several instances in the training set,
and each candidate algorithm is tested on more than one
training instance, the number of actual algorithms gener-
ated and tested is around five times lower than in evolu-
tionary.

• irace-param: We map the derivation rules in the grammar
into a sequence of categorical, real-valued or integer pa-
rameters. The mapping takes into consideration a limited
number of applications of the recursive rules. In the re-
mainder of this work, the maximum number of recursive
rule applications is denoted in subscript after the method’s
name. Large values give more flexibility to the automatic
configuration tool to find the best heuristics, however, they
also enlarge the design space of potential heuristics. We
then use irace to search an effective algorithm for the in-
stances in the training set. Also in this case the tuning
budget is set to 2500 and the total number of algorithms
generated is around five times lower than in the case of
evolutionary.

We compare the above three methods on two combinatorial
optimization problems: 1BPP and PFSP-WT.

5. One-Dimensional Bin Packing

Burke et al. [17] propose to use GE to evolve an iterated
greedy (IG) algorithm for the 1BPP, which corresponds to the
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method we call evolutionary. As a first case study, we com-
pare the two proposed methods, irace-ge and irace-param, with
evolutionary following the experimental setup proposed in that
work.

5.1. Problem Definition

The goal in 1BPP is to pack a set of items of different sizes
into as few bins (of equal capacity) as possible, while respecting
the capacity constraint of the bins. Despite the simplicity of its
formulation, the 1BPP is NP-hard [24], and a large number
of approximation and heuristic algorithms have been proposed
over the years. Among the best-performing heuristics is best-
fit-decreasing [25], which assigns each item to the fullest bin
among those with enough empty space.

5.2. Iterated Greedy: Grammar and Components

IG algorithms, start from a feasible solution and iterate over
two phases: 1) a destruction phase, which removes a number of
items from certain bins, and 2) a reconstruction phase, which
greedily re-assigns the removed items to bins obtaining a new
feasible solution.

The scheme of the IG algorithm for 1BPP is given in Fig. 1.
The initial solution is constructed greedily with a randomized
first-fit heuristic. After a random shuffle of the items to be as-
signed, for each item, randomized_first_fit evaluates systemati-
cally all bins and assigns the item to the first bin that has enough
free space to fit the item. If no such bin exists a new empty bin
is added to the constructed solution. At each iteration, a local
search heuristic (ig_step) is applied to search in the neighbor-
hood of the current solution. The IG algorithm applies this step
100 times and returns the best solution found.

The local search heuristic (ig_step) is generated from the
grammar shown in Fig. 2. Starting from the non-terminal
<start> (line 1 of Fig. 2), there are two main parts: 1) a de-
struction procedure that selects a number of bins according to
one or more criteria, and removes a number of items from the
selected bins; and 2) a reconstruction procedure that repacks
the removed items according to a construction heuristic. The
destruction is described by the recursive rule <select_bins>
(line 2 in Fig. 2), which generates a variable number of criteria
for selecting bins. These criteria select either the highest-filled
bins, the lowest-filled bins, a number of random bins, a num-
ber of bins having a gap smaller than a specified threshold, or a
number of bins containing exactly a specified number of items
(lines 3-9 in Fig. 2). More details can be found in the original
publication [17].

5.3. Experimental Evaluation

We followed the same experimental protocol and used the
same instances as [17] to verify the correctness of our imple-
mentation. We were able to reproduce the results in [17] on
three out of four instance families: Triples, Uniform500 and
Uniform1000. On the fourth one (the Scholl instance family)
we obtained results that were better than the ones presented in
the original paper. Hence, if our implementation differs from

Table 1
Mean distance from lower bound obtained by the heuristics generated by each
configuration method for the 1BPP. The standard deviation is indicated in
parentheses.

Family evolutionary irace-ge irace-param3

Scholl 0.84 (0.16) 0.77 (0.12) 0.76 (0.08)
Uniform500 0.57 (0.35) 0.39 (0.08) 0.39 (0.07)

Uniform1000 0.87 (0.25) 0.73 (0.11) 0.70 (0.07)
Uniform2000 1.39 (0.42) 1.12 (0.24) 1.11 (0.21)
Uniform4000 2.89 (1.10) 2.54 (0.42) 2.50 (0.25)

the original, the difference appears to be in favour of evolu-
tionary. The results are detailed in this article’s supplementary
material [26].

Although evolutionary only uses one training instance, irace
is designed to use more than one. Therefore we generated ad-
ditional instances, and adapted the experimental protocol to ac-
count for this. The generated instances belong to six different
families. The four families used by Burke et al. [17] (Scholl,
Triples, Uniform500, and Uniform1000), plus two additional
families (Uniform2000 and Uniform4000) have been added to
test the methods on slightly larger and more challenging in-
stances. For each instance family, we generate a training set
of 30 instances, which is used by the tuning methods, and a test
set of ten instances, which serves to validate the performance of
the generated heuristics. All instances are available in the sup-
plementary material [26]. To deal with the stochasticity of the
methods, we perform 30 independent runs of each method with
different random seeds. Since evolutionary uses only a single in-
stance, each independent run uses a different instance from the
training set. The methods based on irace have all 30 training
instances available, but the actual number and instances used in
each run depends on the search behavior and the random seed.

For each instance family, we use the three methods to search,
in the design space defined by the grammar, for an IG algorithm
that solves efficiently the training instances. Then, we measure
the performance of the IG on the test instances by computing
the distance of the obtained result from the lower bound [27]
and by averaging it over 10 runs on the 10 test instances. The
results, averaged over 30 repetitions of the procedure described
above, are summarized in Table 1. In this table, as well as in the
rest of the paper, we omitted the results obtained on the Triples
family. The instances of the Triples family are too easy and
are solved equally well by any method, leading to floor effects.
The results on all families are available in the supplementary
material [26].

Figs. 3 and 4 show the results obtained on the Scholl and Uni-
form500 instance families respectively. The results are plotted
in log-scale since for some instance families the outliers would
have impacted on the overall readability of the boxplots. De-
tailed plots on the three methods compared and several others
discussed further in this paper are presented in the supplemen-
tary material [26].

In Table 2, we compare the three methods by means of a
Friedman test blocking on the test instances. On the Uni-
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Fig. 3. Mean distance from lower bound obtained by the heuristics generated
by each configuration method on the Scholl family of instances for 1BPP.
Results are given across 30 independent runs of each configuration method.
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Fig. 4. Mean distance from lower bound obtained by the heuristics generated by
each configuration method on the Uniform500 family of instances for 1BPP.
Results are given across 30 independent runs of each configuration method.

form500, Uniform2000 and Uniform4000 instances, the algo-
rithms generated by irace using both the GE representation and
the proposed parametric representation perform equally well
and significantly better than evolutionary. On the Scholl and
Uniform1000 instances, the results indicate that the combi-
nation of irace with the new parametric representation (irace-
param) is significantly better than the other methods. Overall,
irace-param is the best method across all instance families.

5.4. Analysis of the Results

In the following, we describe further experiments aimed at
better understanding the results obtained in the previous sec-
tion.

Multiple instances for evolutionary. The first question we want
to address is why irace-ge is better than evolutionary. One rea-
son could be that irace implements a better optimization method
than the EA used in evolutionary; the other reason could be
that irace is less sensitive to the risk of overtuning because
it evaluates each candidate algorithm on more than one in-
stance. To rule out this second hypothesis, we have imple-
mented evolutionarymi as a variant of evolutionary that evalu-
ates each candidate algorithm on multiple instances. By default
in irace, candidate algorithms are evaluated on at least five in-
stances. Thus, for each run of evolutionarymi, we select five
random instances from the 30 instances in the training set, and
at each iteration we evaluate the individuals in the population
with a different random seed on the five selected instances. To
compensate for the fivefold increase in the number of function
evaluations, we consider only 10 generations.

Table 2
Comparison of the methods through the Friedman test blocking on the instances
of the five benchmark sets. ∆Rα=0.05 gives the minimum difference in the sum
of ranks between two methods that is statistically significant.

Family ∆Rα=0.05 Method (∆R)

Scholl 4.65 irace-param3 (0), irace-ge (7), evolutionary (17)
Uniform500 4.11 irace-param3 (0), irace-ge (1), evolutionary (15.5)

Uniform1000 3.96 irace-param3 (0), irace-ge (6), evolutionary (18)
Uniform2000 4.54 irace-param3 (0), irace-ge (4), evolutionary (17)
Uniform4000 7.56 irace-param3 (0), irace-ge (5.5), evolutionary (12.5)

On all instance families except Uniform500, irace-ge obtains
results that are better than evolutionarymi. For example, on the
Uniform4000 family, the mean distance from lower bound ob-
tained with evolutionarymi is 3.57 with a standard deviation of
0.76, whereas with irace-ge we obtained a mean distance of
2.54 with a standard deviation of 0.42. The differences between
the results obtained with the methods have been assessed with
a Wilcoxon rank-sum test at significance level α = 0.05, and
for all families, except Uniform500, the difference was statisti-
cally significant. The results suggest that the difference between
irace-ge and evolutionary is rather due to the search strategy of
irace and not due to the larger number of instances used in the
training phase. The results on all instance families are detailed
in the supplementary material [26].

Recursion depth for irace-param. With the parametric repre-
sentation used in irace-param, the complexity of the generated
algorithms depends on the limit employed on the number of ap-
plications of the recursive rules in the grammar. We compared
irace-param3 with irace-param1 that allows just one call of a re-
cursive rule in the grammar, and irace-param5 that allows up to
five calls. On the largest Uniform4000 instances, the worst re-
sults are obtained with one level of recursion: the mean distance
from the bound obtained with irace-param1 is 5.42 with a stan-
dard deviation of 1.11, whereas with irace-param3 the mean dis-
tance obtained is 2.50 with a standard deviation of 0.25. With
irace-param5, the mean distance from the bound is 2.34 with a
standard deviation of 0.35. This pattern is consistent across all
instance families, where irace-param1 always obtains the worst
results, whereas irace-param3 and irace-param5 obtain better re-
sults. The differences between the results have been assessed
with a pairwise Wilcoxon rank-sum test at significance level
α = 0.05 with a Bonferroni correction to deal with the multiple
comparisons. On all instance families, the difference between
irace-param1 and the other two methods was always statistically
significant, whereas we could never reject the null hypothesis
of no difference in the results obtained with irace-param3 and
irace-param5. This suggests that to be effective, the algorithms
should have a level of complexity that can be obtained only by
repeated applications of the recursive rules in the grammar. The
results on all instance families are detailed in the supplementary
material [26].

Random baselines. To confirm the effectiveness of the meth-
ods analysed in this paper, we tested three random variants
as control experiments. For evolutionary, we defined random
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as an algorithm that generates the same number of individ-
uals as evolutionary using the same GE representation. Be-
cause the EA used in evolutionary keeps 5 elite individuals at
each generation, the total number of individuals generated are
50 + 45 · 49 = 2255. In random, these 2255 individuals are
generated independently at random, they are tested once on
the training instance, and the best one is selected. Note that
in evolutionary the elite candidates are re-evaluated with a dif-
ferent seed at each generation, therefore if there is a bias, it is
in favour of evolutionary since it performs 245 function eval-
uations more than random. For what concerns irace-ge and
irace-param, since the candidates are tested on a variable num-
ber of instances, it is not possible to determine a priori how
many individuals will be generated. Therefore, we let rand-ge
and rand-param5 generate 500 random individuals to be tested
on 5 randomly selected training instances for a total of 2500
function evaluations. rand-ge uses the same GE representa-
tion employed in both irace-ge and evolutionary, whereas rand-
param5 uses a parametric representation with five levels of re-
cursion, and it is therefore a baseline for irace-param5. Finally,
randommi is the baseline for evolutionarymi; it generates inde-
pendently at random 50 + 45 · 9 = 455 individuals, it tests
each of them on five different training instances, and selects
the best one. We assess the statistical significance of the dif-
ferences by means of a Wilcoxon rank-sum test at significance
level α = 0.05. On all instance families, irace-ge and irace-
param5 are significantly better than their random counterparts,
with the only exception being the Uniform500 instance family,
where the difference between irace-ge and rand-ge is not statis-
tically significant. Surprisingly, in the case of the comparison
between evolutionary and random, the difference in the results
was statistically significant only for the Uniform1000 and Uni-
form2000 instance families. In the first case, the better results
are obtained with evolutionary, whereas in the second case it
is the random method that produces better results. Concern-
ing evolutionarymi and randommi, the results are not clear-cut:
evolutionarymi gives worse results than its random counterpart
on the Scholl and Uniform4000 instances; it gives better results
on the Uniform500 and Uniform1000 families; there was no
statistically significant difference on the Uniform2000 family.
The results on all instance families are detailed in the supple-
mentary material [26].

In the next section, we carry out the same analysis on a dif-
ferent grammar that generates IG algorithms for a scheduling
problem.

6. Permutation Flowshop Scheduling

The permutation flowshop scheduling problem (PFSP) is one
of the most widely studied scheduling problems, as it models
a very common kind of production environment in industries.
Many formulations can be conceived by adding additional con-
straints and/or focusing on particular objectives. Because of
its relevance in practice, the PFSP has attracted a large amount
of research since it was formally described decades ago [28].
Moreover, since the PFSP isNP-hard [29], tackling real-world
instances often requires the use of heuristic algorithms. For

these reasons, the PFSP is an important benchmark problem for
the design and comparison of heuristics and using automatic
generation to design new algorithms can save a significant ef-
fort when tackling less-studied PFSP variants.

6.1. Problem Definition

The goal in the flowshop problem (FSP) is to schedule a set
of n jobs (J1, . . . , Jn) on m machines (M1, . . . ,Mm). The speci-
ficity of flowshop environments is that all jobs must be pro-
cessed on the machines in the same order, i.e., all jobs have to
be processed on machine M1, then machine M2, and so on until
machine Mm. A common restriction in the FSP is to forbid job
passing between machines, i.e., to restrict to solutions that are
permutations of jobs. The resulting problem is the PFSP. In the
PFSP, all processing times pi j for a job Ji on a machine M j are
fixed, known in advance, and non-negative. In what follows,
Ci j denotes the completion time of a job i on machine j and Ci

denotes the completion time of a job i on the last machine.
In many practical situations, for instance when products are

due to customers at a specific time, jobs have an associated
due date, di, for a job Ji. Moreover some jobs can be more
important than other, which can be expressed by a priority
associated to them. The tardiness of a job Ji is defined as
Ti = max{Ci−di, 0} and the total weighted tardiness is given by∑n

i=1 wi · Ti, where wi is the weight assigned to job Ji to specify
its relative priority.

The PFSP-WT, considers the minimization of the total
weighted tardiness; it isNP-hard in the strong sense even for a
single machine [30]. Formally, the PFSP-WT consists of find-
ing a job permutation π, where πi denotes the job in the i-th
position, such that:

min F(π) =

n∑
i=1

wi · Ti

subject to Cπ0 j = 0 j ∈ {1, . . . ,m},
Cπi0 = 0 i ∈ {1, . . . , n},
Cπi j = max{Cπi−1 j,Cπi j−1} + pi j,

i ∈ {1, . . . , n} j ∈ {1, . . . ,m}.
Ti = max{Ci − di, 0} i ∈ {1, . . . , n}.

(1)

6.2. Iterated Greedy: Grammar and Components

The PFSP has been the object of many studies over the past
decades, and it is still attracting a significant amount of research
nowadays. Recent studies [31, 32] have shown that the best
algorithms to tackle many PFSP variants are based on IG.

The IG algorithm for PFSP-WT is similar to the one ex-
plained for the 1BPP (Sec. 5.2). The initial solution is given by
a random permutation of the jobs and, instead of a fixed number
of iterations, we use a computation time limit. The destruction
phase removes jobs from the schedule, whereas the reconstruc-
tion phase reinserts the jobs removed by considering them one
by one and inserting them in the best position with respect to
some evaluation function computed on the current partial solu-
tion. Thus, the main design choices are: 1) which jobs should
be removed from the current solution, 2) in which order should
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they be reinserted, and 3) which function should be optimized
when choosing their new positions. These design choices are
described by the grammar shown in Fig. 5.

Jobs selection. In this grammar, the algorithm selects jobs ac-
cording to one or more criteria. Each criterion is composed of
four components: a heuristic value, the number of jobs to se-
lect, and a lower bound and an upper bound for the heuristic
value. We consider the following static heuristic values, which
are given by the problem instance for each job Ji:

• The weight wi that defines its priority;

• the due date di;

• the sum of processing times
∑m

j=1 pi j.

Additionally, we compute the following heuristic values from
the current solution:

• The position where the job is (the lower the earlier it is in
the schedule);

• the tardiness of a job in the current solution;

• the time the job waits between machines without being
processed, computed as

∑m−1
j=1 (Cπi j −Cπi j+1);

• the time during which machines are not processing any-
thing because the job takes too long on the previous ma-
chine, computed as

∑m−1
j=1 (Cπi−1 j −Cπi j), for i , 0.

Each criterion removes a percentage <num> of those jobs that
have a heuristic value in the range specified by [<low_range>,
<high_range> ]. The ranges are specified as a percentage of
the actual range of the heuristic values (0% being the minimum
value and 100% the maximum). For example, a rule such as
select_jobs(dueDate, 20, 0, 10) means “select the first
20% of the jobs having a due date within [0%, 10%]” of the
actual ones.

Jobs ordering for reinsertion. Selected jobs are removed from
the current schedule and then reinserted back into a new po-
sition. The re-insertion procedure considers such jobs one by
one and therefore their relative order is important. The order is
decided by one or more criteria. Additional criteria are used to
break ties if needed. Each order criterion is defined by a heuris-
tic value and a comparator that determines whether the jobs are
ranked in increasing or decreasing order of the heuristic values.

Objective for reinserting the jobs. Finally, jobs are reinserted
back into the best position in the current schedule according
to some function measured on the resulting (possibly partial)
schedule. For the PFSP-WT, it seems natural to optimize pri-
marily the weighted tardiness. However, it may happen that for
several candidate positions of a job, the weighted tardiness of
the resulting solution is the same. For example, if the current
partial solution is short, it often happens that the weighted tar-
diness is zero for every position a job may be inserted. Hence,
it may be interesting to break ties using additional criteria.

In particular, we use the sum of completion times of the par-
tial solution, a well-known function positively correlated with
the weighted tardiness; and the weighted earliness, computed
as

∑n
i=1 wi · (di − Ci), which is negatively correlated with the

weighted tardiness.
In state-of-the-art IGs for PFSP-WT, a local search step

is applied to each complete solution after the reconstruction
phase [32]. However, in the present paper we do not consider
such a component inside our IG algorithm, as the focus is on
comparing our approach of generating algorithms to grammat-
ical evolution.

6.3. Experimental Evaluation

We generated a benchmark set of 40 PFSP-WT instances of
50 jobs and 20 machines, and 40 instances of 100 jobs and 20
machines. These two sizes are nowadays the most common
ones in the literature to evaluate heuristic algorithms on various
PFSP variants. Each set is split into 30 instances for the training
set and 10 instances for the test set.

The instances were generated as follows. The processing
times of the jobs on each machine are integers drawn from a
uniform distribution, between 1 and 99 [33]. For the weight
and due date associated to each job, the weights are integers
generated uniformly at random between 1 and 10, and each due
date di is generated in a range proportional to the sum of pro-
cessing times of the job Ji as di =

⌊
r ·

∑m
j=1 pi j

⌋
, where r is a

random real number sampled uniformly between 1 and 4 [34].
For the ease of future comparisons, we make these instances
available in the supplementary material [26].

For each of the two families, we use the three methods al-
ready described for the 1BPP (evolutionary, irace-ge, and irace-
param3) to search the design space. In these experiments, we
use a grammar equivalent to the one in Fig. 5 to directly gen-
erate C++ code. The code is compiled with GCC 4.4.6 with
optimization level -O3. Experiments were run on a single core
of an AMD Opteron 6272 CPU (2.1 GHz, 16 MB L2/L3 cache
size) running under Cluster Rocks Linux version 6/CentOS 6.3,
64bits. We measure the effectiveness of the generated IG algo-
rithms by running them for 0.001 · n · m seconds, and by com-
puting the relative percentage deviation (RPD) from the best
solutions obtained in our tests. The RPD is averaged over 10
runs on the 10 instances of the test set. The experiments are
repeated 30 times using different random seeds, as described
earlier for the 1BPP. The results obtained are summarized in
Table 3, whereas the distributions are depicted as boxplots in
Fig. 6 for the 50x20 family and in Fig. 7 for the 100x20 fam-
ily. In Table 4, we report the results of the Friedman test. On
both instance families, the results obtained by irace-param3 are
significantly better than those obtained with evolutionary; in the
case of the larger 100x20 instances, irace-param3 is also signif-
icantly better than irace-ge.

6.4. Analysis of the Results

We perform the same analysis here as done earlier for the
1BPP in Section 5.4.
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1: <start> ::= procedure ig_step()
2: <select_jobs>
3: remove_selected()
4: sort_removed_jobs(<ordering_criteria>)
5: insert_jobs(construction_criteria)
6: <select_jobs> ::= <job_criteria> | <job_criteria> <select_jobs>
7: <job_criteria> ::= select_job(<heuristic>, <num>, <low_range>, <high_range>)
8: <heuristic> ::= priority | position | sumProcessingTimes | dueDate
9: | tardiness | waitingTime | idleTime

10: <num> ::= {0, 1, ..., 100}
11: <low_range> ::= {0, 1, ..., 99}
12: <high_range> ::= {0, 1, ..., 100}
13: <comparator> ::= "<" | ">"
14: <ordering_criteria> ::= order(<comparator>, <heuristic>)
15: | order_and_break_tie(<comparator>, <heuristic>, <order_criteria>)
16: <construction_criteria> ::= weightedTardiness
17: | weightedTardiness, sumCompletionTimes
18: | weightedTardiness, sumCompletionTimes, weightedEarlyness
19: | weightedTardiness, weightedEarlyness
20: | weightedTardiness, weightedEarlyness, sumCompletionTimes

Fig. 5. Grammar for generating ig_step in Fig. 1 for the PFSP-WT. The derivation rules in lines 10-12 use a compact notation for defining numerical ranges.

Table 3
Mean relative percentage deviation obtained by the heuristics generated by each
tuning method for the PFSP-WT. The standard deviation is indicated in paren-
theses.

Family evolutionary irace-ge irace-param3

50x20 25.47 (8.78) 17.01 (4.63) 16.62 (5.04)
100x20 5.37 (1.66) 3.88 (0.98) 3.43 (0.53)

●
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evolutionary

10 20 30 40

Mean relative percentage deviation

Fig. 6. Mean relative percentage deviation obtained by the heuristics generated
by each tuning method on 50x20 family of instances for PFSP-WT. Results are
given across 30 independent runs of each configuration method.

Multiple instances for evolutionary. We tested evolutionarymi

on the 50x20 and 100x20 instance families and compared the
results obtained with irace-ge. On the small 50x20 instances,
evolutionarymi obtains a mean RPD 20.88 with standard devia-
tion 3.53 whereas irace-ge obtains a mean RPD of 17.01 with
standard deviation 4.63. The difference is statistically signifi-
cant as assessed with a Wilcoxon rank-sum test at significance
level α = 0.05. On the larger 100x20 instances the difference in
the performance between the two methods was not statistically
significant. This suggests that the better performance obtained
by irace-ge with respect to evolutionary is due to the optimiza-
tion method employed by irace, and not due to the fact that
irace-ge considers more than one training instance for evaluat-
ing the candidate algorithms analogous to what was observed
in Section 5.4.

Recursion depth for irace-param. We compared the results
obtained by irace-param1, irace-param3, and irace-param5 by
means of a pairwise Wilcoxon rank-sum test at significance

●●

●
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Fig. 7. Mean relative percentage deviation obtained by the heuristics generated
by each tuning method on 100x20 family of instances for PFSP-WT. Results
are given across 30 independent runs of each configuration method.

Table 4
Comparison of the methods through the Friedman test blocking on the instances
of the two benchmark sets. ∆Rα=0.05 gives the minimum difference in the sum
of ranks between two methods that is statistically significant.

Family ∆Rα=0.05 Method (∆R)

50x20 6.18 irace-ge (0), irace-param3 (1), evolutionary (14)
100x20 3.96 irace-param3 (0), irace-ge (6), evolutionary (18)

level α = 0.05 with a Bonferroni correction to deal with the
multiple comparisons. The only difference that was statistically
significant is on the 50x20 family between irace-param1 and its
counterparts with more levels of recursion, where irace-param1

was significantly worse.

Random baselines. Comparing the methods with their random
baselines we got results that are similar to the ones obtained
on the 1BPP. In fact, as assessed with a Wilcoxon rank-sum
test at significance level α = 0.05, irace-param and irace-ge
are always better than their random counterparts. On the con-
trary, the results obtained with evolutionary and evolutionarymi

could never be distinguished from those obtained by their ran-
dom counterparts.

7. Conclusion

In this paper, we have proposed to apply automatic configura-
tion methods to generate optimization algorithms from a gram-
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mar description. Our results show that simply replacing the
EA in GE with irace and keeping the same linearization of the
grammar is sufficient to improve over the results obtained with
GE approaches [17]. We also propose a method for describing a
grammar as a parametric space and instantiations of the gram-
mar as parameter configurations. This parametric representa-
tion is much more natural for automatic configuration methods.
Our results show that the variant of irace using the parametric
representation obtains better results than the one using the GE
representation.

The results above were tested on the 1BPP in order to com-
pare with results from a previous study [17]. We significantly
extended this previous study by considering more challenging
instance sets and comparing with random baselines. The ex-
tended analysis shows that on some instance families, GE can
be significantly worse than its random counterpart. We also
confirmed our results on an additional, more challenging, com-
binatorial optimization problem, the PFSP-WT. We ruled out
in our experiments the possibility that the advantage of irace
over GE is due to the fact that irace uses more than one train-
ing instance, and is less sensitive to overtuning. The instance
families used here are very homogeneous, and thus, using more
than one instance for training does apparently not yield a sig-
nificant advantage of irace in this case. Therefore, there is an
advantage of irace over the EA used in GE, independently of
the heterogeneity of the instances. This advantage becomes
larger when using a parametric representation rather than the
GE linearization probably because irace has been designed to
deal with complex parametric spaces, while there is a high de-
coupling between the genotype (the codons) and the phenotype
(the corresponding code produced) in the GE linearization.

The grammars explored in this paper (and previous stud-
ies [16, 17, 21]) are relatively simple and concerned with simple
metaheuristics (IG in our case). There are grammars that cannot
be handled by the method proposed here, whereas they could
be handled by GE. Example of these are grammars where the
derivation graph contains cycles that are not simple loops (that
is, rules where the same non-terminal appears on both sides).
Moreover, the number of parameters required to represent a
particular grammar could be further reduced by more aggres-
sive simplifications. We are working on extending our method
to handle such cases. Nonetheless, the methods proposed here
can already handle grammars that generate much more complex
algorithms. For example, in a follow-up work, we have used the
methods proposed here to generate hybrid metaheuristics from
a composition of problem-independent and problem-dependent
grammars [35].
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