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Abstract This chapter introduces two Perl programs that implement graphical tools
for exploring the performance of stochastic local search algorithms for biobjective
optimization problems. These tools are based on the concept of the empirical attain-
ment function (EAF), which describes the probabilistic distribution of the outcomes
obtained by a stochastic algorithm in the objective space. In particular, we consider
the visualization of attainment surfaces and differences between the first-order EAFs
of the outcomes of two algorithms. This visualization allows us to identify certain
algorithmic behaviors in a graphical way. We explain the use of these visualization
tools and illustrate them with examples arising from practice.

Experiments in computer science often produce large amounts of data, mainly
because experiments can be set up, performed and repeated with relative facility.
Given the amount of data, exploratory data analysis techniques are one of the most
important tools that computer scientists may use to support their findings. In particu-
lar, specialized graphical techniques for representing data are often used to perceive
trends and patterns in the data. For instance, there exist techniques for the extraction
of relevant variables, the discovery of hidden structures, and the detection of out-
liers and other anomalies. Such exploratory techniques are mainly used during the
design of an algorithm and when comparing the performance of various algorithms.
Even before testing more formal hypotheses, the algorithm designer has to find pat-
terns in experimental data that provide further insights into new ways of improving
performance.

In this chapter, we focus on the graphical interpretation of the quality of the out-
comes returned by Stochastic Local Search (SLS) algorithms [Hoos and Stützle,
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2 Manuel López-Ibáñez, Luı́s Paquete, and Thomas Stützle

2005] for biobjective combinatorial optimization problems in terms of Pareto-
optimality. This notion of optimality is tied to the notion of dominance. We say
that a solution dominates another one if it is at least as good as the latter for every
objective and strictly better for at least one objective. For these problems, the goal
is to find the set of nondominated solutions among all feasible solutions. The map-
ping of these solutions in the objective space is called Pareto-optimal front. For the
particular case of multiobjective combinatorial optimization problems (MCOPs),
fundamental results about their properties and complexity can be found in Ehrgott
[2000].

Usually, each run of an SLS algorithm produces a nondominated set, a random set
of mutually nondominated objective vectors that approximates the Pareto-optimal
front of an MCOP. Currently, there are two widely used techniques for assessing
the performance of these algorithms with respect to the solution quality: graphical
examination of multiple outcomes and scalar quality indicators. Unfortunately, these
two approaches present several drawbacks that have been discussed in the literature
[Knowles and Corne, 2002, Zitzler et al., 2003].

The empirical attainment function (EAF), formally described in Chap. ??, is seen
in this chapter as a middle ground between directly plotting the complete output and
the extreme simplification of quality indicators. The EAF is a summary of the out-
comes of multiple runs of an SLS algorithm, and, at the same time, it is sufficiently
complex to detect whether and where an algorithm is better than another. By plot-
ting and comparing the EAFs of different SLS algorithms, we are able to pin-point
several performance behaviors that otherwise would be hidden when using other
performance assessment approaches.

The chapter is organized as follows. Section 1 provides a basic introduction to
SLS algorithms for multiobjective optimization in terms of Pareto-optimality, and
their performance assessment. Sections 2 and 3 introduce plotting techniques for ex-
ploring algorithm performance based on the EAF, and describe two Perl programs,
eafplot.pl and eafdiff.pl. Section 4 presents three examples of applica-
tions of these programs. Finally, we present conclusions and further work in Sect. 5.

1 Stochastic Local Search for Multiobjective Problems

SLS algorithms iteratively search for good quality solutions using the local knowl-
edge provided by the definition of a neighborhood or a set of partial solutions. Since
they are based on a randomized search process, it is not expected that the same out-
come is returned for different runs with different random seeds of the random num-
ber generator. Metaheuristics are general-purpose SLS methods that can be adapted
to various optimization problems. Well known metaheuristics are Simulated An-
nealing, Tabu Search, Iterated Local Search, Variable Neighborhood Search, Ant
Colony Optimization, and Evolutionary Algorithms. An overview of these methods
is given by Hoos and Stützle [2005].
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Fig. 1 Ten independent outcomes obtained by an SLS algorithm applied to an instance of a biob-
jective optimization problem. In the right plot, the same outcomes are shown but points belonging
to the same run are joined with a line

Finding the Pareto-optimal front in MCOPs is known to be a hard challenge in
optimization. Moreover, for many problems, the size of the Pareto-optimal front is
too large to be enumerated [Ehrgott, 2000]. Therefore, depending on the time con-
straints, it could be preferable to have an approximation to the Pareto-optimal front
in a reasonable amount of time. Such an approximation is always a nondominated
set, that is, a set of objective vectors that are mutually nondominated.

SLS algorithms have been shown to be state-of-the-art methods for generating
very good approximations to the Pareto-optimal front for many MCOPs. As a result,
when comparing two SLS algorithms, we need to compare nondominated sets that
are in most cases incomparable in the Pareto sense. There are mainly two approaches
for summarizing and comparing SLS algorithms with respect to solution quality:
direct examination of multiple nondominated sets and scalar quality indicators.

As an example of direct examination of the outcomes of an SLS algorithm, we
plot in Fig. 1 the outcomes obtained by ten runs of the same SLS algorithm applied
to an instance of a biobjective optimization problem. On the left plot, we plot the
objective vectors as points. Points with the same shade of gray and shape were ob-
tained in the same run. On the right plot, objective vectors from the same run are
joined with staircase lines delimiting the area dominated by them. Even with only
ten runs, it is difficult to visualize the algorithm behavior. With a larger number of
runs, directly plotting the outcomes quickly becomes impractical. A direct compar-
ison of the outcomes of different algorithms is similarly difficult.

On the other extreme are scalar quality indicators, which are scalar values com-
puted for each nondominated set (or pairs of nondominated sets) [Knowles and
Corne, 2002, Zitzler et al., 2003]. Quality indicators are surrogate measures of par-
ticular quality aspects of the nondominated sets (e.g. closeness to the best-known
solutions, spread, diversity) that are generally acknowledged as desirable. Hence,
several quality indicators are often examined simultaneously, but this, in turn, com-
plicates the interpretation of results. The values returned by quality indicators often
do not reflect by how much and in which aspects a nondominated set is better than
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another. Moreover, recent theoretical work has shown that many quality indicators
may provide an answer that contradicts the most basic and deterministic assertions
of performance. More details can be found in Knowles and Corne [2002] and Zitzler
et al. [2003].

A different perspective on performance assessment of SLS algorithms for MCOPs
is given by the attainment function approach [Grunert da Fonseca et al., 2001].
Chapter ?? provides a theoretical overview on attainment functions. In this chap-
ter, we focus on the first-order attainment function, which represents the probability
of an algorithm finding at least a solution whose objective vector dominates or is
equal to an arbitrary vector in the objective space in a single run. In practice, this
probability is unknown, but it can be estimated empirically from the outcomes ob-
tained in several independent runs of an SLS algorithm, in a way analogous to the
estimation of multivariate distribution functions. This statistical estimator is called
(first-order) empirical attainment function (EAF) [Grunert da Fonseca et al., 2001].1

In the biobjective case, the EAF is both fast to compute and easy to visualize. We
will consider two different visualizations. First, plots of the k%-attainment surfaces
are used to characterize the behavior of a single SLS algorithm. Second, the perfor-
mance of two SLS algorithms is compared by plotting the location of the differences
with respect to their EAFs.

2 Examination of the Attainment Surfaces

Fonseca and Fleming [1996] proposed the notion of attainment surface, which cor-
responds to a boundary which separates the objective space in two regions: those ob-
jective vectors that are attained by (that is, dominated by or equal to) the outcomes
returned by the SLS algorithm, and those that are not. This notion is formalized
in the concept of k%-attainment surface, which is the line separating the objective
space attained by k percent of the runs of an SLS algorithm. In other words, the
k%-attainment surface corresponds to the k/100 percentiles of the empirical fre-
quency distribution. For example, the median attainment surface delimits the region
attained by 50 percent of the runs. Similarly, the worst attainment surface delimits
the region attained by all runs (100%-attainment surface), whereas the best attain-
ment surface corresponds to the limit between the region attained by at least one run
and the objective vectors never attained by any run.

Given m runs, the computation of the EAF is equivalent to the computation of all
k%-attainment surfaces with k = i · 100/m, i = 1, . . . ,m. In fact, the k%-attainment
surface is sufficiently defined by the nondominated objective vectors from the set of
all objective vectors that are attained by k percent of the runs.

The attainment surfaces allow to summarize the behavior of an SLS algorithm
in terms of the location of the objective vectors obtained. For example, if we were
interested in the objective vectors that are attained by at least half of the runs, then

1 We will always refer to the first-order EAF simply as EAF.
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we could examine the median attainment surface. Similarly, the worst-case results of
an algorithm are described by the worst attainment surface, whereas the best results
ever achieved are given by the best attainment surface. Sections 2.2 and 4.1 give
examples.

2.1 The eafplot.pl Program

The program eafplot.pl is a Perl program that produces a plot of attainment
surfaces given an input file that contains a number of nondominated sets. Input files
may contain multiple sets of nondominated objective vectors. Each objective vec-
tor is given in a line as two columns of floating-point numbers. Different sets are
separated by at least one blank line. If several input files are given, then one plot
is produced for each input file, all plots with the same range on the axes. The plots
produced are encapsulated postscript (EPS) files.

These programs require a Perl installation, the statistical environment R [R De-
velopment Core Team, 2008], and an external program for computing the EAF.2

The attainment surfaces plotted by eafplot.pl can be specified in several
ways:

• By default, eafplot.pl plots the best, median, and worst attainment surfaces.
• Option --iqr plots the 25%, 50% (median), and 75% attainment surfaces.
• Option --percentile=INT[,INT] plots the given percentiles of the at-

tainment surface. For example, eafplot.pl --percentile=25,50,75
is equivalent to eafplot.pl --iqr.

• Option --extra=FILE will add objective vectors from FILE to the plot as
points. This may be useful for comparing the outcome of an SLS algorithm
against a reference set.

The program accepts other parameters that are not discussed in this chapter but
are explained by the option --help.

2.2 Example Application of eafplot.pl

Given the input data shown in Fig. 1, the corresponding best, median and worst
attainment surfaces are shown in Fig. 2. This plot was generated by the command:

eafplot.pl example1_dat

As an alternative to the best and worst attainment surfaces, one may prefer to
plot other percentiles that are more robust with respect to the number of runs. The

2 The program for computing the EAFs provided by us is based on the original code written by
Carlos M. Fonseca available at http://www.tik.ee.ethz.ch/pisa/.
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Fig. 2 Best, median and worst attainment surfaces for the data described in Fig. 1
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Fig. 3 Three plots of attainment surfaces for 15 (left), 50 (middle), and 200 (right) independent
runs of the same algorithm on the same problem instance

dependence of the best and worst attainment surfaces on the number of runs is il-
lustrated by Fig. 3, where the same algorithm is run 15 (left), 50 (middle), and 200
(right) times with different random seeds. As more runs are performed, the locations
of the best and worst attainment surfaces change strongly, while the locations of the
25% and 75% attainment surfaces are rather stable. It is well-known from classical
statistics that the sample best and worst are biased estimators for the population best
and worst. The three plots in Fig. 3 were produced by running:

eafplot.pl --best --median --worst \
--percentiles=25,75 r15_dat r50_dat r200_dat

3 Examining the Differences Between EAFs

The EAF is also the basis for a graphical technique that gives visual information
on the pairwise comparison of two SLS algorithms. The main idea is to plot the
location of the differences between the outcomes of two algorithms with respect
to their corresponding EAFs. The EAF of an algorithm estimates the probability
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of attaining each point in the objective space. If the difference of the estimated
probability values of two SLS algorithms at a certain point is large, this indicates
a better performance of one algorithm over another at that point. The sign of the
difference gives information about which algorithm performed better.

The differences between the EAFs of two algorithms can be computed by first
computing the EAF of the union of the outcomes of both algorithms. Then, for each
point in the objective space where the value of the EAF changes, one needs to com-
pute the value of the EAF of the first algorithm at that point minus the value of the
EAF of the second algorithm. This can be done by counting how many runs of each
algorithm attained that point. Finally, positive and negative differences are plotted
separately, and the magnitudes of the differences between the EAFs are encoded
using different shades of grey: the darker a point, the larger is the difference.

Figure 4 illustrates this performance assessment method. The two plots in the top
part of Fig. 4 give the EAFs associated to two algorithms that were run several times
with different random seeds on the same problem instance. Points in the EAFs are
assigned a gray level according to their probability. In addition, we plot four differ-
ent attainment surfaces. The lower line on both plots connects the best set of points
attained over all runs of both algorithms (grand best attainment surface), and the
upper one the set of points attained by any of the runs (grand worst attainment sur-
face). Any differences between the algorithms are contained within these two lines.
The dashed line corresponds to the median attainment surface of each algorithm,
which is given to facilitate the comparison of the two sides of the plot.

The bottom plots of Fig. 4 show the location of the differences between the EAFs
of the two algorithms.3 On the left are shown points where the EAF of Algorithm
1 is larger by at least 20 percent than that of Algorithm 2, and on the right are
given the differences in the opposite direction (positive differences between the EAF
of Algorithm 2 over the one of Algorithm 1). The amount of the differences is
encoded in a grey scale shown in the legend of the plot. To facilitate comparison, the
same attainment surfaces are plotted as for the top plots. From these plots, we can
observe that Algorithm 1 performs better in the center and towards the minimization
of objective 1, whereas Algorithm 2 performs better towards high quality solutions
for the second objective (low values on the y-axis). Note that these differences in
performance would be ignored by most scalar quality indicators.

3.1 The eafdiff.pl Program

The program eafdiff.pl is a Perl program that takes two input files, each of
which contains a number of nondominated sets, and produces a plot of the differ-
ences between the first-order EAFs of the two input files.

The eafdiff.pl program can produce two types of plots:

3 The same information could be provided within one plot by using different colors for positive
and negative differences.
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Algorithm 2

Fig. 4 Visualization of the EAFs associated to the outcomes of two algorithms (top) and the corre-
sponding differences between the EAFs (bottom left: differences in favour of Algorithm 1; bottom
right: differences in favour of Algorithm 2). In the top, the gray level encodes the value of the EAF.
In the bottom, the gray level encodes the magnitude of the observed difference

• A side-by-side plot of the full EAF of each of the input files. This type of plot can
be requested by using the option --full. For example, the top plot of Fig. 4
was produced by the commandline:

eafdiff.pl --full --left="Algorithm 1" ALG_1_dat \
--right="Algorithm 2" ALG_2_dat

• A side-by-side plot of the differences in the EAFs between the two input files.
This is the default. For example, the bottom plot of Fig. 4 was generated by:

eafdiff.pl --left="Algorithm 1" ALG_1_dat \
--right="Algorithm 2" ALG_2_dat
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Table 1 Output files produced by eafdiff.pl given input files file1 and file2

Output plot file1-file2.eps

Grand best attainment surface file1-file2.best

Grand worst attainment surface file1-file2.worst

Differences between EAFs file1-file2.diff

Full EAF of input file fileX fileX.eaf

Median attainment surface of file fileX fileX.med

By default, eafdiff.pl plots also the grand best and grand worst attainment
surfaces as solid black lines, and the median attainment surface corresponding to
each input file as dashed lines. The program accepts other parameters that are not
discussed in this chapter but are explained by the option --help.

Apart from the plot file1-file2.eps, the eafdiff.pl program produces
several output files. These are listed in Table 1.

As for the computation time required by eafdiff.pl, in the example shown
in Fig. 4, each of the two data sets contains 90 runs with an average of 500 objective
vectors per run. The generation of the plot from these data sets required less than
10 seconds of computation time on a Intel CoreTM 2 CPU with 1.83GHz. The com-
putation of the EAF in two dimensions is linear with respect to both the number of
runs and the total number of points. Plotting is also linear, however, in practice the
computation time required by the plotting functions of R and writing out the output
files are the slowest parts of the procedure.

4 Examples

In this section, we illustrate the use of the graphical techniques on several examples.
As we will see, these tools allow us to discover particular algorithm behaviors.

4.1 Effect of Problem Structure

Problem structure has a clear effect on algorithm performance. In multiobjective
optimization, the correlation between the objectives is often an example of this,
since we expect that a large positive correlation between the objectives may induce
a small Pareto-optimal front, and vice versa.

We reproduce here experiments described by López-Ibáñez et al. [2006]. We
consider two instances of the Biobjective Quadratic Assignment Problem (BQAP)
with different correlations between the flow matrices, which translate into different
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Fig. 5 The same algorithm is applied to two BQAP instances with correlation −0.75 (left) and
0.75 (right). The plots show the best, median and worst attainment surfaces of 10 runs

correlations between the corresponding objectives. (See López-Ibáñez et al. [2006]
for a more thorough explanation of this problem).

We plot in Fig. 5 the best, median and worst attainment surfaces of the outcomes
obtained by the same algorithm when applied to two BQAP instances with correla-
tion−0.75 (left) and 0.75 (right). In each case, ten independent runs of the algorithm
were performed with different random seeds. Even thought both instances are simi-
lar in terms of size and range of values, the range of the nondominated sets obtained
for correlation−0.75 (left) is much wider than for correlation 0.75 (right), as can be
seen in the range of the objective values in each of the plots. The plots show a strong
effect of the correlation on the location of the outcomes obtained by the algorithm.

The two plots in Fig. 5 were produced by running:

eafplot.pl n75_dat

eafplot.pl p75_dat

4.2 Differences in Algorithmic Performance

Several approaches to biobjective problems consist in solving several weighted
scalarizations of the objective function vector. Usually, the components of the
weight vectors are real numbers in [0,1] and sum to one. With a subset of weight
vectors evenly distributed in the full set of possible weight vectors, we may expect
to find a well spread set of objective vectors.

Two distinct algorithmic behaviors may be expected either by increasing the
number of weights or by running the underlying stochastic algorithm for a longer
time for each scalarization. Intuitively, by increasing the number of weights, the al-
gorithm should be able to obtain a larger number of nondominated objective vectors
distributed along the Pareto front, which gives a better approximation of the shape
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of the Pareto-optimal front. On the other hand, by giving more time to each scalar-
ization, the resulting nondominated objective vector is typically of a higher quality.
Because of limits in computation time, the algorithm designer has to examine the
trade-off between these two settings in order to improve solution quality.

We describe an experiment that examines the trade-off between different param-
eter settings of WRoTS (Weighted Robust Tabu Search) for the Biobjective QAP,
such as described by López-Ibáñez et al. [2006]. In WRoTS, several scalarizations
of the BQAP objective function vector are solved by repeated runs of the (single-
objective) Robust Tabu Search (RoTS) algorithm [Taillard, 1991]. A single run of
the RoTS algorithm is stopped after l ·n iterations, where n is the instance size and
l is a parameter. Each scalarization uses a different weight, taken from a set of max-
imally dispersed weights [Steuer, 1986]. We denote the number of weights by w.
Upon termination of the main search process, all solutions returned are filtered to
obtain a set of nondominated objective vectors.

Figure 6 shows the differences in EAFs between two algorithm configurations of
WRoTS. The left plot shows differences in favor of performing few scalarizations
and long runs of RoTS (l = 100, w = 10); whereas the right plot shows differences in
favor of performing many short runs of RoTS (l = 10, w = 100). Note that the total
number of iterations performed by each algorithm is the same. There are very strong
differences in three particular regions of the right plot (many scalarizations and short
runs of RoTS). These regions are probably difficult to attain with the coarse set of
weights examined by the left configuration. On the other hand, the use of a larger
number of iterations of RoTS (left plot) does not lead to better individual objective
vectors, except for the extreme objective values.

The plots in Fig. 6 were generated by the command:

eafdiff.pl --left="WRoTS, l=100, w=10" \
--right="WRoTS, l=10, w=100" \
wrots_l100w10_dat wrots_l10w100_dat

4.3 Biased Behavior

An algorithm may be focusing too much on a particular region of the objective
space in detriment of other equally relevant regions, which may be due to some
algorithmic choice. In this example, we present a case in which an algorithm is
more biased towards one objective.

We describe an algorithm that was proposed by Paquete and Stützle [2003],
called two-phase local search (TPLS): the first phase consists of finding a good solu-
tion to one single objective, using an effective single objective algorithm. This phase
provides the starting solution for the second phase, in which a local search algorithm
is applied to a sequence of different scalarizations of the objectives. The underlying
idea for the second phase is that successive scalarizations are treated as a chain: a
scalarization modifies slightly the emphasis given to the different objectives when
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Fig. 6 EAF differences for two configurations of W-RoTS. The left plot shows differences in favor
of long runs of RoTS and few scalarizations (l = 100, w = 10); the right plot shows differences in
favor of short runs of RoTS and many scalarizations (l = 10, w = 100)

compared to the previous scalarization; the local search for each scalarization is
started from the local optimum solution that was returned by the previous scalariza-
tion. The main question is whether this strategy can have comparable performance
to a restart strategy (Restart), which starts from a randomly generated solution at
every scalarization.

The experimental analysis was performed for the Biobjective Travelling Sales-
man Problem. Both algorithms, TPLS and Restart, have the same underlying stochas-
tic local search, an Iterated Local Search [Stützle and Hoos, 2001].

Figure 7 shows the EAF differences between TPLS and Restart. TPLS is able to
obtain good solutions with respect to the second objective. However, TPLS is not
able to improve the solutions obtained by Restart with respect to the first objective.

The plots in Fig. 7 were obtained with the command:

eafdiff.pl --left="TPLS" --right="Restart" tpls rest

5 Summary and Outlook

We have described in this chapter graphical techniques for summarizing and com-
paring the quality of SLS algorithms for biobjective problems in terms of Pareto-
optimality. We have also described two programs that implement these techniques.
In addition, examples of the usage of these programs were provided throughout the
chapter. These examples can be reproduced by using the programs and data avail-
able at http://iridia.ulb.ac.be/supp/IridiaSupp2009-002/.
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Fig. 7 EAF differences for TPLS versus Restart

These graphical techniques are based on the first-order EAF for biobjective opti-
mization problems. For more than two objectives, the graphical technique of parallel
coordinates [Inselberg, 1985] has been used by Paquete and Stützle [2009]. How-
ever, the interpretation of the plots is more difficult than in the biobjective case.
Therefore, other ways to present the information given by the first-order EAF may
be worth investigating. Finally, new techniques could be developed based on the
information provided by higher-order EAFs [Fonseca et al., 2005].
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