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Abstract. Few applications of ACO algorithms to multiobjective prob-
lems have been presented so far and it is not clear how to design an
effective ACO algorithms for such problems. In this article, we study the
performance of several ACO variants for the biobjective Quadratic As-
signment Problem that are based on two fundamentally different search
strategies. The first strategy is based on dominance criteria, while the
second one exploits different scalarizations of the objective function vec-
tor. Further variants differ in the use of multiple colonies, the use of
local search, and the pheromone update strategy. The experimental re-
sults indicate that the use of local search procedures and the correlation
between objectives play an essential role in the performance of the vari-
ants studied in this paper.

1 Introduction

Almost all the applications of Ant Colony Optimization (ACO) tackle prob-
lems for which solutions are evaluated according to only one objective [1]. How-
ever, many real-world problems involve multiple, often conflicting objectives and
it is therefore highly desirable to extend the known best ACO techniques to
tackle such problems. These multiobjective combinatorial optimization problems
(MCOPs) replace the scalar value in single objective problems by an objective
vector, where each component of the vector measures the quality of a candidate
solution for one objective.

We consider MCOPs defined in terms of Pareto optimality. Therefore, we
first have to introduce a dominance relation between objective vectors. Given
two objective vectors u and v, u 6= v, we say that u dominates v if u is not
worse than v for each objective and better for at least one objective. When
neither u dominates v nor vice versa, we say that the two objective vectors
are nondominated. (We use the same terminology among solutions as for the
objective vectors.) The main goal then is to obtain a Pareto global optimum set,
that is, a set of feasible solutions such that none of these solutions is dominated
by any other feasible solution. As often done in the literature, we call Pareto

front any set of nondominated objective vectors.
So far, few approaches of ACO algorithms to MCOPs defined in terms of

Pareto optimality have been proposed [2,3,4]. (For a concise overview of ACO
approaches to MCOPs we refer to [1].) In this article, we examine various of the



possible implementation choices for ACO algorithms when applied to MCOPs
defined in terms of Pareto optimality using the biobjective Quadratic Assignment
Problem (bQAP) as an example application. We also consider instances of
MCOPs for which we systematically modified the correlation between the two
objectives from high positive to high negative correlation. On the algorithmic
side, we examine the influence of two essentially different search strategies of how
to tackle MCOPs. A first strategy uses scalarizations of the objective function
vector into a single value, while the second uses dominance criteria between
solutions. In addition, we test several ACO specific parameters like the number
of colonies, the pheromone update strategy, and the influence of the usage of
local search. The algorithms are evaluated in terms of the binary and unary
ε-measures [5] and median attainment surfaces [6]. The main results are that (i)
for the bQAP local search is essential to achieve high performance, and (ii) the
best choice of parameters and methods for the algorithmic components strongly
depend on the correlation between the objectives.

The article is organized as follows. Section 2 introduces the bQAP. Section 3
gives an overview of the ACO components we considered for the algorithm con-
figurations that are described in Section 4. Finally, Section 5 gives details on the
experimental results and we conclude in Section 6.

2 The Multiobjective QAP

The quadratic assignment problem (QAP) is a well-knownNP-hard problem [7],
which can intuitively be described as the problem of assigning a set of facilities
to a set of locations with given distances between each pair of locations and given
flows between each pair of facilities. The goal is to place the facilities on locations
such that the sum of the products between flows and distances is minimal [8].

The multiobjective QAP (mQAP) proposed by Knowles and Corne [9] uses
different flow matrices, and keeps the same distance matrix. Given n facilities
and n locations, a n × n matrix A where aij is the distance between locations i
and j, and Q n × n matrices Bq , q = 1, ..., Q, where bq

rs is the qth flow between
facilities r and s, the mQAP can be stated as follows:

min
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where min refers to the notion of Pareto optimality. This problem arises in
facilities layout of hospitals [9] and social institutions [10].

Local search algorithms for the biobjective QAP (bQAP) were presented in
[11], where it was found that the best search strategy to be followed by the
local search algorithms depended strongly on the correlation between the flow
matrices (and, hence, objectives), which we denote as ξ. Based on these findings
we also study the behavior of the ACO algorithms in dependence of ξ.



3 ACO algorithms for MCOPs

In the following, we discuss some of the main implementation alternatives for
tackling MCOPs in terms of Pareto optimality with ACO that are additional to
those present for single objective problems. Some of the concepts were already
examined in the literature [2,3,4].

Multiple Colonies. In a multi colony approach, the total number of ants
is divided into disjoint sets, each of these sets being called a colony. Multiple
colonies have previously been used for the parallelization of ACO algorithms. In
MCOPs, the main usage of multiple colonies of ants is to allow each colony to
specialize on a particular region of the Pareto front [2]. In this case, each colony
has its own pheromone information and an ant of a particular colony constructs
solutions guided only by the pheromone information of its own colony. We
will consider only a cooperative case where solutions can be exchanged among
colonies, so that the decision of which solution updates the pheromone of a
colony is affected by the solutions generated by the other colonies.

Pheromone Information. There exist two main alternatives to define the
pheromone information. First, a single pheromone matrix can represent the de-
sirability of the solution components with regard to all objectives [4]. In this case,
the stochastic decision at each construction step is done as in single objective
problems. The second option uses multiple pheromone matrices, where each of
them represents the desirability of the solution components with respect to one
objective. Stochastic decisions then may be made at each step according to only
one objective, which may be randomly or deterministically chosen according to
some criterion, or be based on aggregations of the different pheromone matrices
using weights [2]. In the first case, the usual stochastic decisions of ACO algo-
rithms can be made. The second case for the bQAP would be as follows. Given
two pheromone matrices [τij ] and [τ ′

ij ], the probability of assigning a facility j
to location i is

pk
ij =

[

τ
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] if j ∈ N k
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where N k
i is the feasible neighborhood of ant k, that is, those locations which

are still free, and λ ∈ [0, 1] weights the relative importance of the two objectives.
(In this formula we do not consider any heuristic information, which is anyway
not used in state-of-the-art ACO approaches to the QAP [12]).

Weight Setting Strategies. Whenever we use multiple pheromone matrices
that should be aggregated, weights need to be defined to regulate the influence
of the individual terms. The usage of different strategies for setting the weights
can then result in different search behaviors.



Iredi et al. [2] proposed that each ant uses a different weight (λ in Eq. 2),
such that all weights are maximally dispersed in the interval [0, 1]. When multi-
ple colonies are used, they proposed that each colony considers either the whole
interval, disjoint subintervals, or overlapping subintervals. This weight setting
strategy can be characterized as one of ‘moving towards the Pareto front’ in
several directions at once [13]. A different strategy would be to assign all ants
the same weight at each iteration and vary the weight between iterations. In this
method, weights could be changed in such a way that the ants ‘move along the
Pareto front’, trying to find in each iteration good solutions for a specific aggrega-
tion of objectives and then changing slightly the direction for the next iteration.
These two strategies were also examined for local search procedures [11].

Pheromone Update Strategy. In single objective problems, the best per-
forming ACO algorithms often use only the best solutions of each iteration
(iteration-best strategy) or since the start of the algorithm (best-so-far strat-
egy) for updating the pheromones [1]. One might expect that for MCOPs, sim-
ilar pheromone update strategies may lead to very good performance. In the
multiobjective case one can mimic iteration-best and best-so-far strategies by
selecting among the set of solutions generated in the current iteration or since
the start of the algorithm; however, it is more difficult to determine which are
the best solutions to be chosen for the pheromone update.

Two different ways of implementing the pheromone update are possible. In
selection by dominance, only nondominated solutions are allowed to deposit pher-
omone. An iteration-best strategy would consider the nondominated solutions
among those generated in the current iteration; a best-so-far scheme would be
obtained by choosing only solutions of an archive of the nondominated solutions
found since the start of the algorithm. In the selection by scalarization, only the
best solutions with respect to the scalarization chosen are used, either among
the solutions found in the current iteration or since the start of the algorithm.

These possibilities can be applied, at least in principle, when using only one
pheromone matrix or several pheromone matrices for each objective. In this
paper, we restrict ourselves to a simple form of selection by scalarization that
selects to update the pheromones of those solutions with the best value with
respect to each of the two objectives. Moreover, when one pheromone matrix
is used for each of the objectives, each pheromone matrix is updated by the
solution from the candidate set with the best value for the respective objective.
Therefore, in this case, only one ant per pheromone matrix will be allowed to
deposit pheromone, as done in the best performing ACO algorithms.

A further, important factor to be considered in the pheromone update is
whether one or multiple colonies are considered. While in the first case any of
the above strategies may be applied, many additional possibilities arise in the
latter case. For convenience, in this latter case we focus on the method called
update by region [2], where first the nondominated ants are sorted according to
one objective and then they are partitioned as equally as possible into a number



of subsets equal to the number of colonies. Then, all solutions assigned to subset
i are assigned to colony i.

Finally, one has to decide on the amount of pheromone to be deposited. In
MCOPs, the solution cost cannot be used to define this amount. Therefore, all
ants may deposit a same, constant amount of pheromone.

Local Search. For a large number of problems, ACO algorithms obtain the
best performance when improving the solutions constructed by the ants through
the use of local search procedures [1]. Additionally, it is frequently observed that
the best parameter settings for ACO algorithms as well as the configuration of
ACO algorithms (ie. how algorithmic features are applied and which features are
useful at all) depends strongly on the interaction with the local search. Hence, if
there exists the intuition that local search is important for the final performance,
then local search should be considered from the first design phase.

We can roughly distinguish two classes of local search methods for MCOPs,
one based on dominance criteria and the other based on scalarizations of the
objective functions. For the bQAP, we implemented two local search algorithms.
Pareto Local Search (PLS) [11,14] is a local search that iteratively adds non-
dominated solutions to an archive whereas dominated solutions are discarded.
The second local search is a single objective iterative improvement algorithm
for a weighted sum scalarization of the objective function vector (W-LS). Both,
PLS and W-LS use the same underlying 2-exchange neighborhood, where two
solutions are neighbored if they differ in the location of exactly two facilities,
and a best-improvement pivoting rule.

4 Configurations and Performance Assessment

Many different configurations of ACO algorithms can be designed mixing the
concepts mentioned above. To limit the available choices for the underlying
ACO algorithm, we decided to follow the rules of MAX -MIN Ant System
(MMAS) [12] like the management of the pheromones (evaporation, pheromone
trail limits, etc.), since MMAS is known to be a state-of-the-art algorithm for
the QAP. In our experimental evaluation, we focus on rather simple, straight-
forward ACO configurations that reflect the different types of search strategies
available for MCOPs. The configurations we test are designed in such a way that
they share some common principles and concepts to allow an understanding of
what happens if some features of the configurations are varied. In this sense, our
approach is very much as in experimental design and the goal is to systematically
examine the influence of specific algorithm features on the final performance. In
particular, we study the following features.

1. use of best-so-far vs. iteration-best pheromone update
2. use of one vs. multiple colonies
3. use of one pheromone matrix and a search strategy based on the dominance

criterion (class D) vs. the use of multiple pheromone matrices and selection
by scalarization (class S).



For algorithms of class D, the nondominated solutions generated in the cur-
rent iteration (iteration-best) or since the start of the algorithm (best-so-far)
are distributed among the colonies using update by region, and are then allowed
to update the pheromone matrix of the corresponding colony. For algorithms of
class S, after distributing the nondominated solutions among colonies, only the
best solutions with respect to each objective is allowed to deposit pheromone
in the respective pheromone matrix of each colony. (The same policy applies,
independent of using only one colony or multiple colonies.)

For the class S algorithms we tested two ways of defining the weights for
aggregating the pheromone matrices in the solution construction. The first is
that every ant has a different weight and uses the same value in every iteration,
denoted as S(all); the second is that all ants use the same weight in the current
iteration but the weights are modified between the iterations, denoted as S(one).
Finally, it must be mentioned that the algorithms tested were run with local
search. In particular, for class D we use PLS, while in the case of class S we use
W-LS for the local search. (Note that the local searches were chosen to match
the main search strategy of either class D or class S.)

The different approaches are evaluated in terms of the unary ε-measure using
a lower bound for the bQAP and the binary ε-measure [5]. The unary ε-measure

gives the factor by which a Pareto front is worse than the Pareto global optimum
set with respect to all objectives. Formally, given a Pareto front A and the Pareto
global optimum set P , the unary ε-measure for Q objectives is defined as follows:

Iε(A, P ) = max
p∈P

min
a∈A

max
q∈Q

(aq

pq

)

(3)

For the QAP, typically P is not known and a lower bound is needed. We
use a lower bound to P extending the Gilmore-Lawler lower bound [15] to the
biobjective case. In the single objective case, this bound is given by the optimal
objective value of an associated Linear Assignment Problem (LAP) (see [16]
for more details). We defined a biobjective LAP (bLAP) where each objective
in the bLAP is associated to an objective in the bQAP. Then we solve several
scalarizations of the bLAP to obtain a set of solutions that are not dominated by
the Pareto global optimum set. In order to have a set that dominates the Pareto
global optimum set, we added points as follows. First, we sort the objective
vectors lexicographically and for each successive pair of objective vectors u, v we
added a point w = (min{u1, v1}, min{u2, v2}). For the instances considered here
we used 5000 weight vectors maximally dispersed in [0, 1].

The binary ε-measure is the pairwise version of the unary ε-measure. Given
two Pareto fronts A and B, it considers the values of Iε(A, B) and Iε(B, A). If
Iε(A, B) ≤ 1 and Iε(B, A) > 1 then A is better than B, that is, at least one
solution in A is not worse in all objectives than any solution in B and A 6= B.

We use the binary ε-measure to detect if the Pareto front returned by an
ACO algorithm is better than the other. If no conclusion can be drawn from
the binary ε-measure, we use the unary ε-measure with the lower bound as
defined above. As a next step, we perform a ANOVA analysis [17] on the values
returned by the unary ε-measure in order to detect which of the components



contribute to the overall performance of ACO. Finally, in order to visualize
the differences of performance in the objective space, we also plot the median
attainment surfaces [6] of the Pareto fronts obtained by some configurations.

5 Experimental Setup and Results

The experimental setup considers three components: (i) the search strategy that
can be of class D, S(all) or S(one); (ii) iteration-best versus best-so-far phero-
mone update; and (iii) one or multiple colonies. In addition, each algorithm was
run with and without local search. The total number of ants (m) was equal to
the instance size and we used 5 colonies in the multiple colony approach, where
each colony had m/5 ants. For the management of the pheromones, we followed
the rules of MMAS with ρ = 0.9 for the pheromone evaporation; pbest = 0.05
to derive the factor between the lower and upper pheromone trail limits; and
τmax was set to the theoretically largest value [12].

The algorithms were tested on six symmetric bQAP instances, three un-

structured and three structured instances. The three unstructured instances
were taken from an earlier experimental study [11]. All instances were gener-
ated using the instance generator of Knowles & Corne [9] with size n = 50 and
ξ ∈ {0.75, 0.0, −0.75}, where ξ is a parameter that influences the correlation
between the flow matrices. The QAP specific parameter settings for generating
the unstructured instances were set the same as used for generating instances of
class Taixxa [18]; parameter settings for the structured instances where analo-
gous to those for generating Taixxb [18] instances. The instances are available
from http://www.intellektik.informatik.tu-darmstadt.de/~lpaquete/QAP .

Note that the correlations of the flow matrices also result in different corre-
lations between the objective value vectors especially for the unstructured in-
stances. For unstructured instances, the resulting correlations between the two
objectives are of 0.90,−0.01, and −0.90 for the three values of ξ; in the structured
case, there is not anymore a clear correlation betwen the objectives (the corre-
lations between the objectives are 0.23, 0.03, and −0.08, respectively), which is
probably due to the many zero entries in the flow matrices. The empirical cor-
relations between objectives were determined through samples of 1,000 random
solutions generated for each instance.

Each of the algorithms was run 20 times on each instance for a maximum of
300 CPU-seconds. The algorithms were coded in C and the experiments were
run on a Pentium III 933 MHz CPU and 512 MB RAM under Debian Linux.

As a first step in the analysis of the experimental results, every algorithm was
compared against each other using the binary ε-indicator. This analysis clearly
showed that for unstructured as well as structured instances any algorithm that
uses local search outperforms all algorithms that do not use local search. Interest-
ingly, the second phase of our analysis, which is described below, also suggested
that the best ACO configurations that do not use local search are very different
from the best configurations that do make use of local search procedures. This
indicates that (i) studying ACO algorithms for MCOPs without local search and

http://www.intellektik.informatik.tu-darmstadt.de/~lpaquete/QAP
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Fig. 1. Interaction plots for three unstructured instances of size 50 and with ξ = { 0.75
(top), 0.0 (bottom left), −0.75 (bottom right)}. The search strategy can be based on
dominance with PLS (D) or on scalarizations with W-LS, either in several directions
(S(all)) or in one direction at each iteration (S(one)). The pheromone update strategy
can consider the best solutions found in the current iteration (ib, iteration-best) or in
all the previous iterations (bf, best-so-far). The number of colonies can be one or five

then simply adding local search leads to suboptimal performance and (ii) that
local search may be, as it is true for the single objective case, also an essential
component of ACO algorithms for MCOPs. In the following analysis, we only
consider ACO configurations that use local search.

The results of the first phase of the analysis also showed that for structured
instances the configuration of class D with PLS performs worse than the one
based on class S with W-LS. The main reason is that PLS becomes unfeasible,
because of an enormous number of nondominated solutions, which is much larger
than for the unstructured instances, resulting in very high computation times
for PLS. In addition, this first phase showed that for unstructured instances
with ξ = 0.75, the algorithms of class S using five colonies and iteration-best
pheromone update were outperformed by the other variants and that the variant
of class D using one colony and best-so-far pheromone update was slightly worse



than the other variants. For the other unstructured instances the outcomes of
the algorithms were mainly incomparable in terms of dominance. Therefore, we
proceeded to the second phase of our analysis based on ANOVA.

In the second phase, we evaluated each run of all the algorithms using the
unary ε-indicator based on the lower bounds and we analyzed the results for
the unstructured instances using a multiway ANOVA analysis after verifying
that the ANOVA assumptions (homoscedasticity, independence of residuals, and
normality of residuals) were satisfied [17]. Unfortunately, for structured instances
this analysis was not possible, because some of the ANOVA assumptions were not
met. Figure 1 shows the interactions that were found to be significant at the 0.05
level according to the ANOVA analysis (for unstructured instances). Interactions
indicate that the value of one factor, that is, one particular algorithm component
or parameter setting, depends on the other factors. In other words, the factor
cannot be studied independent of the other factors. Additionally, the HSD Tukey
intervals are plotted [17], allowing us to infer which combinations of parameter
values are significantly different.

From the ANOVA analysis, we can conclude that the best setting of parame-
ters depends on the value of ξ for generating the bQAP instances. In particular,

– for ξ = 0.75, the strategies based on scalarizations with a single colony and
the one based on dominance with five colonies show the best performance.
Also, a better performance was observed when iteration-best pheromone
update was combined with a single colony than with five colonies;

– for ξ = 0.0 and ξ = −0.75, the strategy based on scalarizations and best-
so-far pheromone update show a significantly better performance than the
other combinations.

These general results suggest that for highly positively correlated instances
it is better to use a less aggressive ACO strategy, considering that iteration-best
pheromone update allows for a larger diversification than the best-so-far one.
The same is true considering the number of colonies: using less colonies does not
allow a too strong focus on specific regions of the Pareto front, hence leading
to a higher exploration. On the weakly or negatively correlated instances this
is not anymore true; here a much stronger exploitation of the search experience
appears to be necessary.

Figure 2 shows the median attainment surfaces [6] for unstructured (left side)
and structured (right side) instances using search strategy S with W-LS. In addi-
tion, we plotted reference solutions (given as points in Fig. 2) that were obtained
by a scalarized version of the Robust Tabu Search algorithm (W-RoTS) [11],
which gives a high quality approximation to the Pareto global optimum set.
For W-RoTS we run as many scalarizations as possible in the given 300 CPU
seconds; each run of the underlying tabu search algorithm (RoTS) was stopped
after 100 ·n iterations (see [19] for details on RoTS). In the given CPU-time ap-
proximately 136 scalarizations could be run for W-RoTS. All solutions generated
in such a way were then filtered to yield the given nondominated points. The
result of this comparison is that on the unstructured instances, W-RoTS yields
typically better performance than the ACO algorithms, while on the structured
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Fig. 2. Median attainment surfaces obtained for unstructured (left column) and struc-
tured (right column) instances of size 50 and ξ of 0.75 (top), 0.0 (center) and −0.75
(bottom) when using search strategy based on scalarizations with W-LS. In addition,
the objective value vectors obtained by W-RoTS are plotted (points). (For details see
text.)



instances, the median attainment surfaces of the ACO algorithms appear to
dominate the result of W-RoTS. This result is somehow analogous to the single
objective case, where MMAS using a simple 2-opt local search performs worse
than RoTS for unstructured instances, whereas the same algorithm outperforms
RoTS for structured instances that occur frequently in applications [12].

6 Conclusions and Further Work

We have studied several alternative configurations of ACO algorithms for the
bQAP. A first result is that, similar to the single objective case [1], the best
performance on the bQAP is obtained by combining ACO with local search.
Hence, because of interactions between local search and other parameter settings,
for the design of a high performing ACO algorithm for the bQAP, the usage of
local search has to be taken into account as the first step in the design process.

A second important observation is that algorithm performance varies strongly
with the correlation of the objectives. In fact, depending on this correlation, there
are significant differences in the configurations of the best performing algorithms.
The tendency appears to be that for high positive correlations the search should
not be too focused, while with decreasing correlation, a stronger exploitation of
search experience, for example, through the usage of a best-so-far pheromone
update strategy, becomes an important ingredient of any high performing ACO
algorithm for the bQAP.

There are many possible ways of extending this research. First, the influ-
ence of the various possibilities of configuring ACO algorithms for MCOPs need
to be studied also on other, differently structured problems. Additionally, more
components useful for multiobjective ACO algorithms need to be explored. Fur-
thermore, the exploration of fast and more effective local searches, for example,
the use of RoTS instead of W-LS and bounded archiving techniques for PLS,
is a highly promising direction to improve performance. Another interesting di-
rection would be to use heterogeneous colonies at least for weakly or negatively
correlated bQAP instances: two colonies based on scalarizations can explore the
“tails” of the Pareto front while using one or more colonies with a search strategy
based on dominance explore the center of the Pareto front.
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