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Abstract. In this paper, we examine the problem of maintaining an approximation of
the set of nondominated points visited during a multiobjective optimization, a problem
commonly known as archiving. Most of the currently available archiving algorithms are
reviewed, and what is known about their convergence and approximation properties is
summarized. The main scenario considered is the restricted case where the archive must
be updated online as points are generated one by one, and at most a fixed number of
points are to be stored in the archive at any one time. In this scenario, the C-monotonicity
of an archiving algorithm is proposed as a weaker, but more practical, property than
negative efficiency preservation. This paper shows that hypervolume-based archivers and
a recently proposed multi-level grid archiver have this property. On the other hand, the
archiving methods used by SPEA2 and NSGA-II do not, and they may C-deteriorate with
time. The C-monotonicity property has meaning on any input sequence of points. We
also classify archivers according to limit properties, i.e. convergence and approximation
properties of the archiver in the limit of infinite (input) samples from a finite space with
strictly positive generation probabilities for all points. This paper establishes a number of
research questions, and provides the initial framework and analysis for answering them.

Keywords: approximation set, archive, convergence, efficiency preserving, epsilon-dominance,
hypervolume, online algorithms

1 Introduction

The convergence properties of large classes of multiobjective evolutionary algorithms were seri-
ously considered for the first time in the late 1990s [18,9,17]. These papers laid the foundations
for much of the analysis that has gone on to date, and showed that certain types of elitism
combined with a certain type of generation process lead to convergence (in the limit) to a sub-
set of the Pareto front (PF). Moreover, they indicated that, to a large extent, properties of a
multiobjective stochastic search algorithm as a whole can be derived from separately considering
properties of the generation process and properties of the elite-preserving mechanism.

Today, most multiobjective stochastic search algorithms are elitist in the sense of keeping an
external archive (or memory) in order to capture the output of the search process. Because the
set of minima visited may be very large in a multiobjective optimization process, it is common to
bound the size of the archive. Thus, properties of the elite-preservation, or archiving, rules used
to maintain bounded archives are of high interest to the community. Our aim in this paper is to
elucidate, in one place, some of the properties of existing archiving algorithms that keep at most
a fixed maximum number of points to approximate the PF. We restrict our attention to sequen-
tial archiving of points that arrive one-by-one, but consider a number of differently motivated
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algorithms for this setting. We consider archiving algorithms aimed only at convergence (similar
to AR1 [17]), algorithms aimed mostly at ‘diversity’4 (derived from the elite population update
rules of SPEA2 [19] and NSGA-II [7]), algorithms that consider overall approximation quality
(epsilon dominance-based [16], grid-based [13], and based on maximizing hypervolume [11,1]),
including a relatively new proposal called multi-level grid archiving [15]. We review the properties
of these archiving algorithms and illustrate them empirically.

2 Preliminaries

We are concerned with vectors (points) in finite, multidimensional objective spaces. Let Y ⊂ Rd

be a finite objective space of dimension d > 1. An order relation on Y may be defined as follows:
y ≺ y′ iff ∀i ∈ 1, . . . , d, yi ≤ y′i and y 6= y′. Thus ≺ is a strict partial order on Y . Instead of
y ≺ y′ we may also write y dominates y′. The set of minimal elements of Y may be defined as

Y ∗ := min(Y,≺) = {y ∈ Y,@y′ ∈ Y, y′ ≺ y}.

The set Y ∗ is called the Pareto front (PF). Any other set P ⊆ Y with the property P = min(P,≺)
will be called a nondominated set.

We are interested in finding approximations of the set Y ∗ of cardinality at most N . Such
approximation sets are also partially ordered when we extend the definitions of dominance to
pairs of sets as follows. Let P be a nondominated set. A point y 6∈ P is nondominated w.r.t. P iff
@y′ ∈ P, y′ ≺ y. Let P and Q be two nondominated sets. Then P C Q iff min(P ∪Q,≺) = P 6= Q.

2.1 Optimal approximation sets of bounded size

The partial order on sets defined by C gives the primary solution concept for determining an
optimal approximation set of size at most N , as follows:

Definition 1 (Optimal Approximation Set of Bounded Size). If A ⊆ Y is a nondomi-
nated set, |A| ≤ N , and @B ⊆ Y, |B| ≤ N,B C A, then A is an optimal approximation set of
bounded size N of Y ∗.

This solution concept derives from the dominance partial order only, but is in general not
sufficient to guide a search or archiving process alone. We are now used to the notion of evaluating
approximation sets with performance indicators, and using performance indicators to define other
solution concepts that are compatible with dominance (see below), i.e. they are refinements [21]
of it, that may be more suitable for guiding an archiving algorithm.

2.2 Compatibility of performance indicators

Let J be the set of all nondominated subsets of Y . A unary performance indicator I : J → R
is a mapping from the set J to the real numbers. Assuming that the indicator’s value is to
be minimised, we can define compatibility of I with respect to (J,C). If @A,B ∈ J , such that
A C B and I(A) ≥ I(B) then I is a compatible indicator [10,22]. Analogously, a weakly compatible
indicator can be defined by replacing I(A) ≥ I(B) with I(A) > I(B) in the statement above.

4 The term “diversity” has no fixed definition in the literature, but it can refer to the evenness of the
spacing between points and/or the extent of the nondominated set.
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Hypervolume indicator The hypervolume indicator HYP(A) [20] of an approximation set A
(originally called the S metric in the literature) is the Lebesgue integral of the union of (hyper-
ectangular, axis-parallel) regions dominated by the set A and bounded by a single d dimensional
reference point that must be dominated by all members of the true PF. The indicator’s value
should be maximized. The compatibility of the indicator [12,22] is behind its importance as a
performance assessment method and as a means of guiding search and archiving algorithms.

Additive ε indicator A point y is said to be weakly ε-dominated by a point y′ iff ∀i ∈ 1, . . . , d,
y′i ≤ yi + εi. The unary epsilon indicator εadd(A) of an approximation set A is defined as the
minimum value of ε such that every point in Y ∗ is weakly ε-dominated by an element of A. This
indicator has been shown to be weakly compatible with the C-relation on sets [22] following the
proposal of ε-dominance as a means of evaluating and obtaining approximation sets [16].

3 Archivers, Convergence and Approximation

Similarly to earlier papers [16,13,6], the setting we consider is that some generation process is
producing a sequence of points (objective vectors) 〈y(1), y(2), . . . 〉, and we wish to maintain a
subset of these minima in an archive A of fixed maximum size, |A| ≤ N . We denote by At the
contents of the archive after the presentation of the t-th objective vector. An archiver, i.e., an
archiving algorithm for updating A with y, is an online algorithm [2] as it has to deal with a
stream of data with no knowledge of future inputs. Knowles and Corne [13] previously showed
that this online nature of the task means that no archiver can guarantee to have in its archive
min(N, |Y ∗t |) where Y ∗t is the set of minimal elements of the input sequence up to a time t. A
corollary of this, not previously stated explicitly, is that no online archiver of bounded size can
deliver an ‘optimal approximation set of bounded size’ even in the weak sense of Definition 1.

3.1 Convergence and Approximation Definitions

When analysing an archiver’s behaviour, we may be interested in how it performs in general input
sequences of finite length, where points do not necessarily appear more than once in the sequence.
This scenario models a one-pass finite sample of the search space. Or we may be interested in
sequences where every point is seen an infinite number of times [17]. When considering the one-
pass setting, we wish to know whether the archive is always a good approximation of the input
sequence (at every time step). When considering the behaviour on points drawn indefinitely from
a finite space, we wish to know whether convergence ever occurs (does the archive stop changing
eventually?), and if so, what kind of approximation set is obtained, i.e. what is the archiver’s
limit behaviour. The following definitions expand on these ideas. The first four are properties that
apply to one-pass settings (which also imply they are limit properties, too). Two limit-behaviour
definitions follow.

Definition 2 (⊆ Y ∗). No point in the archive is dominated by a point in the input sequence:
∀t, ∀y ∈ At, y ∈ Y ∗t .

Definition 3 (diversifies). An archiver is efficiency preserving [9] when full, if ∀t, |At| = N ,
y ∈ At+1 iff ∃y′ ∈ At, y ≺ y′. In other words, the archiver, when full, cannot accept points outside
of the region dominating the current archive, thus limiting the diversity of points in the archive.
This also implies that the archiver is negative efficiency preserving, that is, the region dominated
by the current archive is a subset of the region dominated by subsequent archives [9]. We say
that an archiver without this property diversifies by discarding a nondominated point from the
archive to accept the new one.
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Fig. 1. Illustrations of some convergence concepts. (Left) Consider that {a, b} is an archive; then an
efficiency-preserving archiver may only accept a point in the (dominating) shaded region. If it accepts a′

(removing a) this is also negatively efficiency preserving because the total region dominated is a superset
of the region dominated by a, as indicated by the dashed lines. (Middle) Consider a different archive
represented by c and d. In this case, a negatively efficiency preserving archiver can cause points to be
unreachable, since only points within either of the shaded regions can now be accepted (adapted from
Hanne [9]). (Right) Points e and f illustrate how the ε-Pareto archiver manages to guarantee that only
Pareto optimal points are in its final archive. Two points in the same box cannot co-exist so one will
be rejected from the archive. Let us say it is f . Only points which dominate e are allowed to populate
the box in the future. Since the intersection of the region dominating e and the region dominated by f
is empty, this ensures that, although f is no longer in the archive, no point dominated by f ever enters
the archive.

Definition 4 (monotone). There does not exist a pair of points y ∈ At and y′ ∈ Av, t < v
such that y dominates y′. Let an archiver that does not have this property be said to deteriorate.

Definition 5 (C-monotone). There does not exist a pair of sets At and Av, t < v such that
At C Av. Let an archiver that does not have this property be said to C-deteriorate.

Definition 6 (limit-stable). For any sequence consisting of points drawn indefinitely with a
strictly positive probability from a finite set, there exists a t such that ∀v > t, At = Av. That is,
the archive set converges to a stable set in finite time.

Definition 7 (limit-optimal). For any sequence consisting of points drawn indefinitely with
a strictly positive probability from a finite set, the archive will converge to an optimal bounded
archive (see Definition 1).

Table 1 summarises the properties of the eight archivers in terms of Definitions 2–7. An
illustration of some of these concepts is given in Fig. 1.

3.2 Basic Archiver Pattern

Six of the eight archivers we study (all except for the two ε-based ones [16]) follow the scheme of
Algorithm 1. These archivers describe a class called “precise” [6]. It is helpful for the later analysis
of each individual archiver to observe the properties of Rules 1 and 2 (see Algorithm 1). Rule 1
is efficiency-preserving [9], which means that the region that contains points that dominate the
archive after application of the rule is a subset of this region before the rule was applied. The
rule is also negative efficiency preserving (Ibid.), which means that the region dominated by the
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Table 1. Types of convergence behaviour displayed by the archivers, and broad indication of time
complexity for archive update. P denotes polynomial in N and d, and E(d) expresses exponential in d.

Archiver ⊆ Y ∗ Diversif. Monotone C-
monotone

Limit-
stable

Limit-
optimal

Complexity

Unbounded + + + + + + P
Dominating - - + + + + P

ε-approx - + - + + - P
ε-Pareto + + + + + - P

NSGA-II - + - - - - P
SPEA2 - + - - - - P

AGA - + - - - - P
AAS - + - + + + E(d)

MGA - + - + + + P

Algorithm 1 Basic Archiver Pattern

Input: At−1, y
if ∃y′ ∈ At−1, y

′ ≺ y then
At ← min(At−1 ∪ {y}) // Rule 1

else if |min(At−1 ∪ {y})| ≤ N then
At ← min(At−1 ∪ {y}) // Rule 2

else
At ← filter(At−1 ∪ {y}) // filter(·) returns a set of size N

end if
Output: At

archive after application of the rule is a superset of this region before. Rule 2 on the other hand
is just negative efficiency preserving. For other properties of the algorithms described below, see
Table 1.

3.3 Unbounded Archive

Trivially, the archiver yields the Pareto front of the input sequence. Although it is negative
efficiency preserving [9] (Def. 3), it does not suffer from the curse of unreachable points (Ibid.)
because these only occur when the set of points is also size limited.

3.4 Dominating Archive

The simplest way to achieve an archive of fixed maximum size is to implement the Basic Archiver
with the filter(·) function that just returns At−1. In other words, this archiver admits only domi-
nating points whenever it is at full capacity. This archiver, when connected to a suitable sequence-
generating process, is similar to the AR1 algorithm [17]. Due to the use of Rules 1 and 2 in
combination (only), the archiver is negative efficiency preserving [9] (Def. 3). Two corollaries of
this are that the archive cannot deteriorate (Def. 4), and it will always contain a subset of the
Pareto front of the input sequence. However, the archiver gives no guarantee of approximation
quality, and, in practice, especially for small N , it will tend to an almost efficiency preserving
behaviour [9] where it shrinks into a small region of the Pareto front. The archive may also con-
tain points that are not Pareto optimal in the input sequence (even though deterioration does
not occur), because |A| may fall below N (due to Rule 1) and points dominated in Y may be



6 M. López-Ibáñez, J. Knowles, M. Laumanns

accepted because the dominating point in Y ∗ was previously rejected entry into the archive due
to rule filter(·), at an earlier timestep when the archive was full.

3.5 Adaptive ε-Approx Archiving

The ε-approx archiver [16] does not follow our previous pattern. In this algorithm, a point
is accepted only if it is not ε-dominated by an archived point. If it is accepted, then At ←
min(At−1 ∪ {y}), as usual. For fixed ε, it was shown that the archive is always an ε-approximate
set of the input sequence of finite size (but not limited to any fixed value).

Laumanns et al. [16] also describe an adaptive scheme in order to allow a user to specify a
maximum archive size N , rather than an ε value. However, this scheme often results in too large
values of ε with the result that too few points are archived (e.g. compared to AGA) [14]. Hence,
although the archiver is C-monotone, it is not limit-optimal. Other properties are summarised
in Table 1.

3.6 Adaptive ε-Pareto Archiving

The second archiver in [16] uses the idea that objective space can be discretized, via ε, into
equivalence classes called ‘boxes’, so that every objective vector belongs to precisely one box.
Within a box, only one point is allowed to exist in the archive, and the update rule within a box
allows only a dominating point to replace the incumbent (see Fig. 1). This scheme guarantees
that every point in the archive is Pareto optimal wrt the input sequence. This is the only archiver
here that has this property and maintains a size-bounded archive.

Similarly to the ε-approximate archiver, a scheme to adapt ε on the fly was also proposed
in [16] so that an archive limited to N points could be obtained. But this adaptation scheme
does not facilitate reducing ε if it starts or becomes too large, with the result that the archiver
keeps too few solutions, preventing it from being limit-optimal.

3.7 NSGA-II Archiver

The NSGA-II algorithm [7] assigns different selective fitness to nondominated points on the
basis of their crowding distance, a coarse estimate of the empty space that surrounds a point.
Our NSGA-II archiver follows the scheme of the Basic Archiver (Algorithm 1), and implements
the filter(·) function by removing the point with minimum crowding distance [7].

Since crowding distance is independent of dominance, no convergence guarantees can be made.
It does not yield a subset of the nondominated points from the input sequence, in general. More
importantly, the archive may C-deteriorate (Definition 5), and we later show this empirically in
Section 4.4. Moreover, even on a sequence constructed from an indefinite random sampling of a
finite space, the archive may never settle to a stable set.

3.8 SPEA2 Archiver

The external population update of SPEA2 [19] was designed to prevent some of the regression
and oscillation observed in the original SPEA. Our SPEA2 archiver follows the scheme of the
Basic Archiver (Algorithm 1), but uses the distance to the k-nearest neighbour as the density
measure in the filter(·) function, as is used in SPEA2 for update of the external population.

The SPEA2 archiver has similar properties to NSGA-II archiver in terms of convergence and
approximation: The archive can C-deteriorate, and the archiver is not limit-stable. Moreover, we
show in Section 4.3 that even for a sequence of all Pareto-optimal points, the diversity measure
of SPEA2 may lead to very poor approximation quality.
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3.9 Adaptive Grid Archiving (AGA)

Adaptive grid archiving uses a grid over the points in objective space in order to estimate local
density. Its filter(·) rule in the instantiation of Algorithm 1 is

At ← At−1 ∪ {y} \ {yc ∈ C}

where yc is a point drawn uniformly at random from C, the set of all the vectors in the “most
crowded” grid cells, excluding any points that are a minimum or maximum on any objective
within the current archive.

The archive rule is neither negatively efficiency preserving nor nor avoids deterioration. Nei-
ther is it C-monotone, a more serious problem. Only under special conditions (the grid cells
are correctly sized and the grid stops moving) does a form of approximation guarantee become
possible [11].

3.10 Hypervolume Archiver AAS

This archiver was first proposed by Knowles [11] and follows the pattern of Algorithm 1, with
the filter(·) rule:

At ← arg max
A∈AN

{HYP(A)},

where AN is the set of all subsets of At−1 ∪ {y} of size N . In the one pass scenario, greedily
removing the least-contributor does not ensure that the hypervolume is maximized over the whole
sequence [4]. In Section 4.3, we provide an example where AAS clearly does not maximize the
hypervolume. Moreover, a point in the archive may be dominated by one that was previously in
the archive, i.e., it may deteriorate. However, since the hypervolume never decreases, the archiver
is C-monotone (Definition 5).

The behaviour in the limit fulfills the solution concept (Definition 1), i.e. it is limit-optimal.
The archive will be a set of min(N, |Y ∗|) Pareto-optimal points after sufficiently long time, since
if a set of size N has its maximum hypervolume value (out of all sets of such size) then all the
points are Pareto optimal [8, Theorem 1].

Bringmann and Friedrich [5] have proved that hypervolume approximates the additive ε
indicator, converging quickly as N increases. That is, sets that maximize hypervolume are near
optimal on additive ε too, with the ‘gap’ diminishing as quickly as O(1/N).

Updating the archive may be computationally expensive for large d and N . But despite the
intractability of finding the point contributing least to the hypervolume in a set, approximation
schemes may be good enough in practice [3].

3.11 Multi-level Grid Archiving (MGA)

The multi-level grid archiving (MGA) algorithm [15] can be thought of as combining principles
from AGA and the ε-Pareto archiver. It was designed from the outset to maintain at most N
points, achieving this by using a hierarchical family of boxes (equivalence classes) of different
coarseness over the objective space. Specifically, when comparing solution at coarseness level
b ∈ Z, the components yi of their objective vectors y ∈ Rd are mapped to (integral) values
byi · 2−bc to define its box index vector at level b.

The archiver follows the pattern of Algorithm 1. Its filter(·) rule works by first determining the
smallest level b where at least one of the N+1 candidates’ box index vector is weakly dominated.
The new candidate y is rejected if it belongs to the points that are weakly dominated at this level
b; otherwise an arbitrary solution from this set is deleted. Through this adaptive determination
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of the right coarseness level for comparison, the behaviour observed in the ε-archivers of ending
up with too large an ε value can be avoided, as we later show experimentally in Section 4.1.

The archiver may deteriorate, which means the archive may contain points dominated by
points from previous archives. We provide an example of this in Section 4.5. Nevertheless, it is
shown in [15] that any archive update strictly increases a unary performance indicator compatible
with dominance, i.e., it is C-monotone (Def. 5), like the hypervolume archiver AAS . However,
unlike the AAS , MGA does not calculate this unary indicator explicitly, which makes it compu-
tationally more tractable than AAS . In particular, its time complexity is O(d ·N2 · L), where L
is the length of the binary encoded input, therefore polynomial.

4 Empirical Study

Despite their crucial importance in the quality of MOEAs, there is surprisingly little experimental
work on the behaviour of different archivers [16,13,6]. We provide in this section experiments
that confirm the observations in the previous sections, and illustrate some properties of popular
archivers that have not been described in the literature.

We have implemented the various archiving algorithms in C++ within a common framework.
We make available the initial version of this framework at http://iridia.ulb.ac.be/~manuel/
archivers in order to help future analysis. We plan to extend this framework in the future with
other archivers found in the literature.

In this section, we empirically analyse the reviewed archiving algorithms. In order to focus on
the properties of the algorithms, we study the performance of the algorithms when presented with
particular sequences of points. The sequences studied have been generated in order to highlight
some characteristics of the algorithms.

We evaluate the quality of the algorithms with respect to the hypervolume and unary ε-
indicator. In all sequences, we run the unbounded algorithm and keep the Pareto front at each
iteration of the sequence. In the case of the additive ε measure (εadd), the reference set is the
optimal PF (which is the final unbounded archive). Then, for each archiver and at each itera-
tion, we calculate εadd(At)− εadd(Unboundedt). Similarly, for the hypervolume we calculate the
reference point over the final unbounded Pareto front as

ri = max fi + ((1 + (1/(N − 1))) · (max fi −min fi)).

Then, we calculate the ratio HYP(At)/HYP(Unboundedt), for each iteration t of the input se-
quence.

In all sequences, the objective functions are to be minimized, without loss of generality since
the sequences are finite, we could always transform them into an all-positive maximization prob-
lem and the results will stand.

4.1 MGA addresses key weakness of ε-archivers

In both ε-approximate and ε-Pareto algorithms, the ε may become arbitrarily large with respect
to the extent of the Pareto front. Knowles and Corne [14] showed that this occurs, for example,
when the initial range of objective values is much larger than the actual range of the Pareto front.
In that case, the initial estimate of ε is much larger than actually needed, but since ε cannot
decrease, the algorithms end up accepting fewer points than N . This situation occurs even with
a small initial estimate of ε = 0.0001, as we use in the experiments here. We ran experiments on
two sequences proposed by Knowles and Corne [14], of length 10 000 and dimensions 2 and 3,
respectively. Fig. 2 and Fig. 3 show that these sequences are not a problem for MGA. Moreover,
while MGA is able to maintain an archive size of |A| = 10, ε-approximate and ε-Pareto only keep
2 and 1 solutions respectively just after 4 000 iterations until the end.

http://iridia.ulb.ac.be/~manuel/archivers
http://iridia.ulb.ac.be/~manuel/archivers
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Fig. 2. Small PF (2D) N = 10
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Fig. 3. Small PF (3D) N = 10

4.2 MGA vs. AAs for clustered points

We use a clustered sequence of 900 points in two dimensions to show the different final sets
archived by AAs and MGA. Fig. 4 shows that AAs keeps the extremes of each cluster, whereas
MGA points are not sparsely distributed within each cluster. The result is that AAs obtains
better value in all performance indicators.

4.3 Fast degradation of the SPEA2 archiver

We illustrate how the quality of SPEA2 archiver can degrade very fast if points are added in the
extreme of the Pareto front. We generate a sequence of 2 000 nondominated points in a straight
line, sorted in increasing order of their first dimension. The top plots in Fig. 5 show that the
quality of the archive stored by SPEA2 archiver degrades very rapidly as the sequence progresses.
What is happening is that SPEA2 keeps the N − 1 initial solutions plus the new extreme, which
replaces the old extreme. Therefore, at every step, the gap between the new extreme and the
N−1 initial solutions increases further. The final archives are shown in the bottom plot of Fig. 5.
All but one solutions archived by SPEA2 are clustered in the left-most extreme of the PF.

The plot also shows that neither MGA nor AAs obtain a perfect approximation, which for
this particular sequence would mean a uniformly distributed archive. Since they do not have
knowledge about the real range of the PF, they cannot accurately decide when to keep a solution
close to the moving extreme. Nonetheless, MGA and AAs do not suffer the fast degradation in
approximation quality shown by the SPEA2 archiver.
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4.4 The NSGA-II archiver C-deteriorates

It is possible to construct a sequence of points such that the NSGA-II archiver removes points
from its archive that are Pareto-optimal and includes points that are dominated in such a way
that the archived set may be dominated by a previously archived set, and therefore, we say that
the quality of the archive has C-deteriorated over time (Definition 5). Fig. 6 shows the final
archive stored by Unbound, AAs, MGA and NSGA-II. Except for the extremes, the rest of the
final archive stored by NSGA-II archiver is dominated by solutions stored in previous archives. In
fact, for this sequence, the archive at step t = 58 is dominated by the archive at step t = 56. It is
possible to construct different sequences that show the same behaviour for the SPEA2 archiver.

4.5 MGA may deteriorate

In general, MGA may deteriorate (Def. 4), since the final archive may contain points that are
dominated by points that were previously in the archive and deleted. This is exemplified in the
sequence shown in Fig. 7 for N = 4. In this sequence, MGA deletes point d after archiving
point e. Then, a and b become dominated by f , and g is accepted into the archive, despite it is
dominated by d. A sequence showing that AAs also deteriorates can be constructed by placing
g such that it is dominated only by c.

5 Conclusions

In this paper we have examined the problem of keeping a bounded size approximation of the
Pareto front of a set of points in a d-dimensional (objective) space, when the elements of the set
are only accessed one-by-one. This models the archiving process of keeping an elite population
or bounded size “best-so-far” outcome in many multi-objective optimizers.

Earlier works on this problem have dealt with algorithms designed to be stand-alone archivers,
such as AGA and ε-based archivers. However, the diversity mechanisms employed by popular
MOEAs are also archiving algorithms. In this paper, we have proposed a classification of both
kinds of archivers, and the recently proposed MGA, according to a number of properties not con-
sidered before for this problem (summarised in Table 1). In particular, we differentiate between
negative efficiency preservation, monotonicity and C-monotonicity, and identify two classes of
archivers, one based on compatible indicators (hypervolume-based AAs and the new MGA), and
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Fig. 5. Increasing extremes (2D) affects SPEA2 performance, N = 20

another based on diversity mechanisms (SPEA2, NSGA-II and AGA). This allows us to under-
stand more precisely why the former class of archivers have better convergence properties than
the latter class, even when points are seen just once. The former cannot C-deteriorate, even if a
single point in the archive can be dominated by one that was previously in the archived set. This
classification raises the question as to whether there may exist an archiver of the same class as
MGA and AAs that is also monotone.

In addition, our experiments have shown that the recently proposed MGA addresses the key
weakness of the earlier ε-based archivers, however, at the cost of losing the guarantee of only
archiving Pareto-optimal solutions. As a final observation, we did not find an absolute winner,
but a tentative assessment is that AAs often produces better results with respect to hypervolume,
whereas MGA often obtains the best ε-measure values.

This paper has shown that the archiving problem is far from being well-understood, and we
have left open a number of questions. First, we have only examined artificial sequences, designed
to show the properties defined here. An interesting extension is to assess the typical performance
of the archivers on multiple runs for various simple geometric sequences in varying dimensions,
and also from points coming from stochastic search on standard benchmark problems. Second, we
have limited ourselves to one-by-one archiving of points and (mostly) a one-pass setting. We know
that updating the archive with more than one point simultaneously cannot be a worse approach,
and for hypervolume it has already been shown to be superior. Therefore, understanding how
the properties defined here extend to other update scenarios is an open research question. Third,
we plan to extend this work to other archivers found in the literature, and to foster that project
we also provide the archivers and artificial sequences used here to the community.5 Fourth, we

5 Source code is available from http://iridia.ulb.ac.be/~manuel/archivers and sequences from
http://iridia.ulb.ac.be/~manuel/archivers-sequences

http://iridia.ulb.ac.be/~manuel/archivers
http://iridia.ulb.ac.be/~manuel/archivers-sequences
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plan to use competitive analysis techniques from the field of online algorithms to obtain worst-
case bounds, in terms of a measure of “regret” for archivers. Finally, after highlighting some
weaknesses of existing archivers, we ask whether designing a better archiver is possible, and
what trade-offs exist in its design.
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Errata Revision 002 (March 2011)

– Section 3.1 defined “negative efficiency preserving” in a way inconsistent with Hanne’s origi-
nal definition. In fact, negative efficiency preserving is equivalent to efficiency preserving when
full. A new property “monotone” corresponds now with our previous (wrong) definition of
negative efficiency preserving.

– Section 4.1 claimed that MGA maintains an archive size of 20 points. This is obviously wrong
since the maximum archive size in those experiments is 10, which is also the correct value of
MGA archive size.
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