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a IRIDIA, CoDE, Université Libre de Bruxelles, Brussels, Belgium
b ALBCOM Research Group, Universitat Polit�ecnica de Catalunya, Barcelona, Spain

a r t i c l e i n f o

Available online 3 December 2009

Keywords:

Ant colony optimization

Travelling salesman problem with time

windows

Hybridization

a b s t r a c t

The travelling salesman problem with time windows is a difficult optimization problem that arises, for

example, in logistics. This paper deals with the minimization of the travel-cost. For solving this

problem, this paper proposes a Beam-ACO algorithm, which is a hybrid method combining ant colony

optimization with beam search. In general, Beam-ACO algorithms heavily rely on accurate and

computationally inexpensive bounding information for differentiating between partial solutions. This

work uses stochastic sampling as a useful alternative. An extensive experimental evaluation on seven

benchmark sets from the literature shows that the proposed Beam-ACO algorithm is currently a state-

of-the-art technique for the travelling salesman problem with time windows when travel-cost

optimization is concerned.

& 2009 Elsevier Ltd. All rights reserved.

1. Introduction

The travelling salesman problem with time windows (TSPTW)
is an important problem in logistics. More specifically, it can be
used for modelling routing as well as scheduling tasks. Concern-
ing routing, it models the problem of finding an efficient route to
visit a number of customers, starting and ending at a depot, with
the added difficulty that each customer must be visited within a
given time window. The TSPTW can also model the problem of
scheduling jobs on a single machine where the setup time of each
job depends on the previous job, and each job has a release time
and a deadline. In the context of the routing problem the travel
cost is the objective most often minimized, whereas in the context
of the scheduling problem the makespan is usually subject to
optimization. In this work we focus on the routing problem under
travel-cost optimization. We will henceforth refer to this problem
simply as the TSPTW. The TSPTW is proven to be NP�hard, and
even finding a feasible solution is an NP�complete problem [1].
Moreover, the TSPTW is closely related to a number of important
problems. For example, while the travelling salesman problem
(TSP) is a special case of the TSPTW, the TSPTW itself can be seen
as a special case of the vehicle routing problem with time
windows (VRPTW) when only one vehicle is concerned.

1.1. History

Early works [2,3] focused on makespan optimization. The
proposed techniques are based on branch-and-bound and solve
instances with up to 50 nodes. However, they are not able to
handle time windows that are wide or mostly overlapping. Most
later works deal with travel-cost optimization. Langevin et al. [4]
considered both makespan and travel-cost optimization. They
describe a two-commodity flow formulation within a branch-
and-bound scheme being able to solve instances with up to
40 nodes. Dumas et al. [5] extended earlier dynamic programming
approaches by using state space reduction techniques that enable
the solution of instances with up to 200 customers. More recently,
Ascheuer et al. [6] considered a branch-and-cut algorithm
applying techniques tailored for the asymmetric TSPTW. Balas
and Simonetti [7] proposed a linear-time dynamic programming
algorithm for various TSP variants with precedence constraints
including the TSPTW. Constraint programming has also been
applied to develop exact methods [8,9].

Because of the inherent difficulty of the TSPTW, heuristic
techniques have been considered as well. Carlton and Barnes [10]
developed a tabu search approach that allows the examination of
infeasible neighbors through the implementation of a (static)
penalty function. Gendreau et al. [11] presented a construction
and post-optimization heuristic. Calvo [12] presented a construc-
tion heuristic that starts with a solution to an ad hoc assignment
problem, proceeds with a greedy insertion procedure to obtain a
complete solution and applies local search to further improve the
solution. Recently, Ohlmann and Thomas [13] proposed a
compressed annealing (CA) algorithm, a variant of simulated
annealing [14] that makes use of a variable penalty method. In
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cblum@lsi.upc.edu (C. Blum).

Computers & Operations Research 37 (2010) 1570–1583



Author's personal copy
ARTICLE IN PRESS

their excellent paper they provide an extensive comparison with
previous approaches. Their approach can currently be regarded as
state of the art.

1.2. Our contribution

In this work, we propose a Beam-ACO algorithm [15,16] for
solving the TSPTW. This algorithm results from combining the
metaheuristic ant colony optimization [17] with the tree search
method beam search [18]. Due to the lack of an efficient and
effective lower bound, which is needed by the beam search
component, we employ instead stochastic sampling [19,20] for
the evaluation of partial solutions. This paper is a significant
extension of previous work [21,22]. First, we add a sophisticated
local search method for improving the solutions constructed by
Beam-ACO. Second, we apply our algorithm to all benchmark sets
that can be found in the literature. More specifically, we use the
five benchmark sets considered by Ohlmann and Thomas [13],
and additionally we consider two more benchmark sets. For each
benchmark set we compare to the best available algorithms.
To the best of our knowledge, this is the most comprehensive
comparison of algorithms for the TSPTW to date. Apart from the
extensive comparison to existing approaches, we also present a
study of the influence of different algorithmic components on the
performance of the algorithm. In particular, we examine the
influence of the pheromone information, the effect of different
degrees of stochastic sampling, and how the algorithm behavior
changes when local search is incorporated.

1.3. Organization

This work is organized as follows. In Section 2 we give a
technical description of the TSPTW. Section 3 introduces the
Beam-ACO algorithm to tackle the TSPTW. In Section 4 we
describe the experimental evaluation, and in Section 5 we offer
conclusions and an outlook to future work.

2. The TSP with time windows

Given an undirected complete graph G¼ ðN;AÞFwhere N¼

f0;1; . . . ;ng is a set of nodes representing the depot (node 0) and n

customers, and A¼N � N is the set of edges connecting
the nodes—a solution to the TSPTW is a tour visiting each node
once, starting and ending at the depot. Hence, a tour is
represented as P¼ ðp0 ¼ 0; p1; . . . ; pn; pnþ1 ¼ 0Þ, where the sub-
sequence ðp1; . . . ; pk; . . . ;pnÞ is a permutation of the nodes in N\f0g
and pk denotes the index of the customer at the kth position of the
tour. Two additional elements, p0 ¼ 0 and pnþ1 ¼ 0, represent the
depot where each tour must start and end.

For every edge aijAA between two nodes i and j, there is an
associated cost cðaijÞ. This cost typically represents the travel time
between customers i and j, plus a service time at customer i.
Furthermore, there is a time window ½ei; li� associated to each
node iAN, which specifies that customer i cannot be serviced
before ei or visited later than li. In most formulations of the
problem, waiting times are permitted, that is, a node i can be
reached before the start of its time window ei, but cannot be left
before ei. Therefore, given a particular tour P, the departure time
from customer pk is calculated as Dpk

¼maxðApk
; epk
Þ, where

Apk
¼Dpk�1

þcðapk�1 ;pk
Þ is the arrival time at customer pk.

As mentioned before, in this paper we focus on the minimiza-
tion of the travel cost, that is, the minimization of the cost of the
edges traversed along the tour. This objective function has been
chosen by the majority of previous works. Given this objective,

the TSPTW can be formally defined as follows:

minimize f ðPÞ ¼
Xn

k ¼ 0

cðapk ;pkþ 1
Þ

subject to OðPÞ ¼
Xnþ1

k ¼ 0

oðpkÞ ¼ 0; ð1Þ

where

oðpkÞ ¼
1 if Apk

4 lpk
;

0 otherwise;

(

Apkþ 1
¼maxðApk

; epk
Þþcðapk ;pkþ 1

Þ:

In the above definition, OðPÞ denotes the number of time
window constraints that are violated by tour P, which must be
zero for feasible solutions.

3. The Beam-ACO algorithm

In the following we outline the Beam-ACO algorithm that we
developed for the TSPTW. As mentioned before, Beam-ACO
algorithms are hybrids between ant colony optimization and
beam search. Ant colony optimization (ACO) is a metaheuristic
that is based on the probabilistic construction of solutions. At
each algorithm iteration, a number of solutions are constructed
independently of each other. Beam-ACO employs instead at each
iteration a probabilistic beam search procedure that constructs a
number of solutions interdependently and in parallel. At each
construction step, beam search keeps a certain number of the best
partial solutions available for further extension. These partial
solutions are selected with respect to bounding information.
Hence, accurate and inexpensive bounding information is a
crucial component of beam search. A problem arises when the
bounding information is either misleading or when this informa-
tion is computationally expensive, which is the case for the
TSPTW. In this work we use stochastic sampling [19,20] as an
alternative to bounding information. When using stochastic
sampling, each partial solution is completed a certain number of
times in a stochastic way. The information obtained by these
stochastic samples is used to rank the different partial solutions.
The worst partial solutions are then excluded from further
examination.

First, we focus on the solution construction part of the
algorithm, because it is crucial for the success of Beam-ACO. Note
that solution construction is necessary for beam search as well as
for stochastic sampling. Both procedures are based on a pher-
omone model T , which is a finite set of numerical values. In the
case of the TSPTW, 8aijAA, (tijAT , 0rtijr1. Being currently at
costumer i, tij represents the desirability of travelling to unvisited
customer j next. In general, the greater the pheromone value tij,
the greater is the desirability of visiting j next.

One feature that distinguishes our approach from other
algorithms from the literature is the fact that we allow the
construction of infeasible solutions, and we do not make use
of penalty terms. Therefore, it is necessary to define a way of
comparing between different—possibly infeasible—solutions.
This will be done lexicographically ðo lexÞ by first minimizing
the number of constraint violations (O) and, in the case of an
equal number of constraint violations, by comparing the tour cost
(f). More formally, we compare two different solutions P and P0 as
follows:

Po lexP0 () OðPÞoOðP0Þ or ðOðPÞ ¼OðP0Þ and f ðPÞo f ðP0ÞÞ: ð2Þ
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3.1. Stochastic sampling

The process of completing a given partial solution several
times in a stochastic way is known in the literature as stochastic
sampling. We will make use of this methodology within beam
search as explained in Section 3.2.

A partial solution P is completed by adding the unvisited
costumers one by one until all costumers are visited. At each step,
the set of unvisited costumers is denoted by N ðPÞ. Once all
customers have been added to the tour, it is completed by adding
node 0 which represents the depot. The decision of which
customer to choose at each step is done with the help of
pheromone information and heuristic information. This is done
by firstly generating a random number q uniformly distributed
within ½0;1� and comparing this value with a parameter q0 called
the determinism rate. If qrq0, jAN ðPÞ is chosen deterministically
as the costumer with the highest product of pheromone and
heuristic information, that is, j¼ argmaxkAN ðPÞ ftik � Zikg, where i is
the last customer added to the partial tour P, and Zij is the
heuristic information that represents an estimation of the benefit
of visiting customer j directly after customer i. Otherwise, j is
stochastically chosen from the following distribution of probabil-
ities:

piðjÞ ¼
tij � ZijP

kAN ðPÞtik � Zik

if jAN ðPÞ: ð3Þ

Regarding the definition of Zij, several existing greedy functions
for the TSPTW may be used for that purpose. When deciding
which customer should be visited next, not only a small
travel cost between customers is desirable but also
those customers whose time window finishes sooner should be
given priority to avoid constraint violations. In addition, visiting
those customers whose time window starts earlier may prevent
waiting times. Hence, we use a heuristic information that
combines travel cost (cij), latest service time (lj) and earliest
service time (ej). Their normalized values are combined as
follows:

Zij ¼ lc cmax�cij

cmax�cmin
þll lmax�lj

lmax�lmin
þle emax�ej

emax�emin
; ð4Þ

where lc
þll
þle
¼ 1 are weights that allow to balance the

importance of each type of information. In earlier experiments,
we found that no single combination of weights would perform
best across all instances of a benchmark set. Therefore, we
decided to define the weights randomly for each application of
probabilistic beam search. As a consequence, all stochastic
sampling actions applied within a specific application of prob-
abilistic beam search use the same weight setting as the
corresponding probabilistic beam search.

3.2. Probabilistic beam search

The probabilistic beam search (PBS) that is used within
Beam-ACO is described in Algorithm 1. The algorithm
requires three input parameters: kbwAZþ is the beam width,
mARþZ1 is a parameter that is used to derive the number of
children that can be chosen at each step, and Ns is the number
of stochastic samples taken for evaluating a partial solution.
Moreover, Bt denotes a set of partial solutions (that is, partial
tours) called the beam. Hereby, index t denotes the current
construction step of beam search. At any time it holds that
jBtjrkbw, that is, the number of partial solutions in the beam
must be smaller than or equal to the beam width. A problem-
dependent greedy function nð Þ is utilized to assign a weight to
partial solutions.

Algorithm 1. Probabilistic beam search (PBS) for the TSPTW.

1: B0 :¼ fð0Þg
2: randomly define the weights lc , ll, and le

3: for t :¼ 0 to n do
4: C :¼ CðBtÞ

5: for k :¼ 1; . . . ;minfbm � kbwc; jCjg do
6: /P; jS :¼ChooseFromðCÞ

7: C :¼ C\/P; jS
8: Btþ1 :¼ Bt [/P; jS
9: end for
10: Btþ1 :¼ReduceðBtþ1; kbwÞ

11: end for
12: output: argminlexfT j TABng

At the start of the algorithm the beam only contains one partial
tour starting at the depot, that is, B0 ¼ fð0Þg. Let C ¼ CðBtÞ denote
the set of all possible extensions of the partial tours in Bt . A partial
tour P may be extended by adding a customer j not yet visited by
that tour. Such a candidate extension of a partial tour is—in the
context of PBS—henceforth denoted by /P; jS. At each construc-
tion step, at most bm � kbwc candidate extensions are selected from
C by means of the procedure ChooseFromðCÞ to form the new
beam Btþ1.1 At the end of each step, the new beam Btþ1 is reduced
by means of the procedure Reduce in case it contains more than
kbw partial solutions. When t¼ n, that is, when n construction
steps have been performed, all partial tours in Bn are completed
by adding the depot, and finally the best solution is returned.

The procedure ChooseFromðCÞ chooses a candidate extension
/P; jS from C, either deterministically or probabilistically
according to the determinism rate q0. More precisely, for each
call to ChooseFromðCÞ, a random number q is generated and
if qrq0 then the decision is taken deterministically by choosing
the candidate extension that maximises the product of the
pheromone information and the greedy function: /P; jS¼
argmax/P0 ;kSACtð/P0; kSÞ � nð/P0; kSÞ�1, where tð/P0; kSÞ corre-
sponds to the pheromone value tikAT , supposing that i is the
last customer visited in tour P0. Otherwise, if q4q0, the decision is
taken stochastically according to the following probabilities:

pð/P; jSÞ ¼
tð/P; jSÞ � nð/P; jSÞ�1P

/P0 ;kSACtð/P0; kSÞ � nð/P0; kSÞ�1
: ð5Þ

The greedy function nð/P; jSÞ assigns a heuristic value to each
candidate extension /P; jS. In principle, we might use the greedy
function Z as given in Eq. (4) for that purpose, that is,
nð/P; jSÞ ¼ Zð/P; jSÞ. As in the case of the pheromone information,
the notation Zð/P; jSÞ refers to the value of Zij as defined in Eq. (4),
supposing that i is the last customer visited in partial solution P.
However, when comparing two extensions /P; jSAC and
/P0; kSAC, the value of Z might be misleading in case PaP0.
We solved this problem by defining the greedy function nð Þ as the
sum of the ranks of the heuristic information values that
correspond to the construction of the extension. For an example
see Fig. 1. The edge labels of the search tree are tuples that contain
the (fictious) values of the heuristic information ðZÞ in the first
place, and the corresponding rank in the second place. For
example, the extension 2 of the partial solution ð1Þ, denoted by
/ð1Þ;2S has greedy value nð/ð1Þ;2SÞ ¼ 1þ2¼ 3.

1 Note that parameter mZ1 was chosen to be a real value in order to allow a

fine-grained adjustment of the number of candidate extensions to be chosen at

each step of PBS. The choice of mZ1 to be an integer number would only allow

multiples of kbw. For example, with kbw ¼ 10, the number of candidate extensions

to be chosen were restricted to be in f10;20;30; . . .g. However, kbw ¼ 10 and a

setting of m¼ 1:5 allows the selection of 15 candidate extensions, which would not

be possible if m were an integer number.
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Finally, the application of procedure Reduce removes the worst
maxfjBtj�kbw;0g partial solutions from Bt . As mentioned before, we
use stochastic sampling for evaluating partial solutions. More
specifically, for each partial solution, a number Ns of complete
solutions is sampled as explained in Section 3.1. The value of the best
of these samples (with respect to Eq. (2) is used for evaluating the
corresponding partial solution. Only the kbw best partial solutions
(with respect to their corresponding best samples) are kept in Bt and
the others are discarded. In our implementation, these best kbw partial
solutions are determined by a sorting algorithm that is provided by
the programming language that we used ðCþþÞ. Therefore, we did
not have to worry about tie breaking.

3.3. Beam-ACO framework

The probabilistic beam search outlined in the previous section is
used within an ACO algorithm implemented in the hyper-cube
framework [23]. A high level description of this ACO algorithm is
given in Algorithm 2. The main variables used to control the flow of
the algorithm are: (1) the best-so-far solution Pbf , that is, the best
solution generated since the start of the algorithm; (2) the restart-best

solution Prb, that is, the best solution generated since the last restart
of the algorithm; (3) the iteration-best solution Pib, that is, the best
solution constructed in the current iteration, (4) the convergence factor

(cf ), 0rcf r1, which is a measure of how far the algorithm is from
convergence; and (5) the Boolean variable bs_update, which is set to
true when the algorithm reaches convergence.

Algorithm 2. Beam-ACO algorithm for the TSPTW.

1: input: Ns; kbwAZþ , mARþ , q0A ½0;1� �R

2: Pbf :¼ null, Prb :¼ null, cf :¼ 0, bs_update :¼ false
3: tij :¼ 0:5 8tijAT
4: while CPU time limit not reached do
5: Pib :¼ PBS(kbw, m, Ns) //see Algorithm 1
6: Pib :¼ LocalSearchðPibÞ

7: if Pibo lexPrb then Prb :¼ Pib

8: if Pibo lexPbf then Pbf :¼ Pib

9: cf :¼ComputeConvergenceFactorðT Þ
10: if bs_update¼ true and cf 40:99 then
11: tij :¼ 0:5 8tijAT
12: Prb :¼ null, bs_update :¼ false
13: else
14: if cf 40:99 then bs_update :¼ true
15: ApplyPheromoneUpdateðcf , bs_update, T , Pib, Prb, Pbf Þ

16: end if
17: end while
18: output: Pbf

The algorithm roughly works as follows. First, all variables are
initialized. The pheromone values are set to their initial value 0.5.
Then, the algorithm iterates a main loop until a maximum CPU time
limit is reached. Each iteration consists of the following steps. First, a
probabilistic beam search algorithm is executed (as explained in
Section 3.2). This produces the iteration-best solution Pib, which is
then subject to the application of local search. After updating the
best-so-far solution, a new value for the convergence factor cf is
computed. Depending on this value, as well as on the value of the
Boolean variable bs_update, a decision on whether to restart
the algorithm or not is made. If the algorithm is restarted, all the
pheromone values are reset to their initial value (0.5). The algorithm
is iterated until the CPU time limit is reached. Once terminated, the
algorithm returns the best solution found which corresponds to Pbf .
In the following we describe the remaining procedures of Algorithm
2 in more detail.

LocalSearchðPibÞ: The local search applied in this work is based
on the 1-opt neighborhood in which a single customer is removed
from the tour and reinserted in a different position. The local
search implemented follows the description of Carlton and Barnes
[10], although in their description they left out many details.
Previous local search approaches made use of a penalty term for
evaluating infeasible solutions. Instead we compare solutions
lexicographically following Eq. (2).

Algorithm 3. 1-Opt local search for the TSPTW.

1: input: P¼ ðp0; . . . ; pnþ1Þ

2: Pbest :¼ P

3: for k :¼ 1 to n�1 do
4: P0 :¼ P

5: if not is_time_window_infeasibleðpk
0 ; pkþ1

0 Þ then
6: P0 :¼ swapðP0; kÞ // see Algorithm 4
7: if P0o lexPbest then Pbest : ¼ P0

8: P00 :¼ P0

9: for d :¼ kþ1 to n�1 do
10: if is_time_window_infeasibleðpd

0 ;pdþ1
0 Þ then break

11: P0 :¼ swapðP0; dÞ // see Algorithm 4
12: if P0o lexPbest then Pbest :¼ P0

13: end for
14: P0 :¼ P00

15: for d :¼ k�1 to 1 do
16: if is_time_window_infeasibleðpd

0 ;pdþ1
0 Þ then break

17: P0 :¼ swapðP0; dÞ // see Algorithm 4
18: if P0o lexPbest then Pbest :¼ P0

19: end for
20: end if
21: end for
22: output: Pbest

Algorithm 3 describes the way of choosing the best neighbor of
an input solution P within the 1-opt neighborhood. Procedure
LocalSearchðPibÞ in Algorithm 2 refers to the iterative application
of this algorithm until no better solution can be found. Given
a starting solution P, all insertion moves of customer pk into
a different position of P are incrementally explored for
k¼ 1; . . . ;n�1. This is done in two stages. First, all insertions of
pk into later positions of the tour are examined by a sequence of
swap moves exchanging customer pd and pdþ1, for d¼ k; . . . ;n�1.
Second, all insertions of customer pkþ1 into an earlier position
of the tour are examined. Since, inserting customer pkþ1 one
position earlier is equivalent to inserting customer pk one position
later, the second stage skips the first movement, which was
already evaluated in the first stage, and proceeds by a sequence of

(0)

1 2 3

(0.5, 1) (0.2, 3) (0.3, 2)

2 3 1 3 1 2

(0.3, 2) (0.7, 1) (0.5, 1) (0.5, 1) (0.4, 2) (0.6, 1)

3 2 3 1 2 1

(1,1) (1,1) (1,1) (1,1) (1,1) (1,1)

Fig. 1. Search tree corresponding to a problem instance with three customers.

Edge labels are tuples that contain the heuristic information ðZÞ in the first place,

and the corresponding rank in the second place.
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swap moves exchanging customers pd and pdþ1 for d¼ k�1; . . . ;1.
We say that a customer i is strongly time-window infeasible with
respect to customer j if and only if ejþtji4 li, that is, if the earliest
time for leaving j plus the travel time from j to i is larger than the
latest arrival time at i [10]. If customer i is strongly time-window
infeasible with respect to j, then no feasible tour can visit i later
than j. In the local search, strong time window infeasibility is
taken into account to avoid insertion moves that produce
infeasible solutions [10].

In order to provide a reproducible description of the local
search that we implemented, we also describe procedure swapð Þ

from Algorithm 3 in more detail in Algorithm 4. The tour cost can
be evaluated in constant time by calculating the difference in cost
of the exchanged arcs. On the other hand, the calculation of the
makespan and the number of constraint violations may require
adjusting the arrival times after the exchanged arcs. This will not
be necessary if there is a positive waiting time at a customer
k4dþ2 both before (Akoepk

) and after (Ak
0 oepk

) a swap move is
applied to customer pd. In this case it holds that Ak ¼ Ak

0 ¼ epk
, and

subsequent customers are not affected by the move. It is not clear
whether Carlton and Barnes [10] made use of this speed-up in
their tabu search approach. Our experiments show that it may
notably reduce computation time.

ComputeConvergenceFactorðT Þ: This procedure computes the
convergence factor cf , which is a function of the current
pheromone values, as follows:

cf ¼ 2

P
tij AT maxftmax�tij; tij�tming

jT j � ðtmax�tminÞ
�0:5

 !
; ð6Þ

where tmax and tmin are, respectively, the maximum and
minimum pheromone values allowed. Hence, cf ¼ 0 when the
algorithm is initialized (or reset), that is, when all pheromone
values are set to 0.5. In contrast, when the algorithm has
converged, then cf ¼ 1. In all other cases, cf has a value within
(0,1).

ApplyPheromoneUpdateðcf , bs_update, T , Pib, Prb, Pbf Þ: In
general, three solutions are used for updating the pheromone
values. These are the iteration-best solution Pib, the restart-best

solution Prb, and the best-so-far solution Pbf . The influence of each
solution on the pheromone update depends on the state of
convergence of the algorithm as measured by the convergence
factor cf . Hence, each pheromone value tijAT is updated as
follows:

tij ¼ tijþr � ðxij�tijÞ; ð7Þ

Algorithm 4. Procedure swapðP; kÞ of Algorithm 3.

1: input: a tour P, a position in the tour k

2: fold :¼ f ðPÞ

3: Oold :¼OðPÞ
4: Dc :¼ cðapk�1 ;pkþ 1

Þþcðapkþ 1 ;pk
Þþcðapk ;pkþ 2

Þ�cðapk�1 ;pk
Þ�cðapk ;pkþ 1

Þ�cðapkþ 1 ;pkþ 2
Þ

5: The new objective function value of P is foldþDc (by delta-evaluation)
6: if Apk

4 lpk
then Oold :¼Oold�1

7: if Apkþ 1
4 lpkþ 1

then Oold :¼Oold�1

8: if Apkþ 2
4 lpkþ 2

then Oold :¼Oold�1

9: Apk
:¼maxðApk�1

þcðapk�1 ;pkþ 1
Þ; epkþ 1

Þ

10: Apkþ 1
:¼maxðApk

þcðapkþ 1 ;pk�1
Þ; epk
Þ

11: Apkþ 2
:¼maxðApkþ 1

þcðapk ;pkþ 2
Þ; epkþ 2

Þ

12: if Apk
4 lpkþ 1

then Oold :¼Ooldþ1

13: if Apkþ 1
4 lpk

then Oold :¼Ooldþ1

14: if Apkþ 2
4 lpkþ 2

then Oold :¼Ooldþ1

15: for i :¼ kþ3 to nþ1 do
16: Api

0 :¼ Api�1
þcðapi�1 ;pi

Þ

17: if Api
oepi

then

18: // We had to wait before y

19: if Api

0 oepi
then

20: Api
:¼ epi

// ywe still have to wait y

21: break // yso nothing else changes.
22: end if
23: else
24: // We did not wait before y

25: if Api
4 lpi

then Oold :¼Oold�1

26: if Api

0 oepi
then

27: Api
:¼ epi

// ywe wait now y

28: next // yso the next customer is affected.
29: end if
30: end if
31: Api

:¼ Api

0 // ywe do not wait now.

32: if Api
4 lpi

then Oold :¼Ooldþ1

33: end for
34: The new number of constraint violations of P is Oold (by delta-evaluation)
35: output: P :¼ ðp0; . . . ; pk�1; pkþ1; pk;pkþ2; . . . ; pnþ1Þ
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with xij ¼ kib � Pib
ij þk

rb � Prb
ij þk

bf � Pbf
ij , where r is a parameter that

determines the learning rate, P�ij is 1 if customer j is visited after
customer i in solution P� and 0 otherwise, kib is the weight (i.e.
the influence) of solution Pib, krb is the weight of solution Prb, kbf

is the weight of solution Pbf , and kibþkrbþkbf ¼ 1. For our
application we used a standard update schedule as shown in
Table 1 and a value of r¼ 0:1.

After the pheromone update rule in Eq. (7) is applied,
pheromone values that exceed tmax ¼ 0:999 are set back to tmax

(similarly for tmin ¼ 0:001). This is done in order to avoid a
complete convergence of the algorithm, which is a situation that
should be avoided. This completes the description of our Beam-
ACO approach for the TSPTW.

4. Experimental evaluation

We implemented Beam-ACO in Cþþ and conducted all
experiments on a computer with an Intel Xeon X3350 processor
with 2.66 GHz CPU and 6 MB of cache size running GNU/Linux
2.6.18. In the following we first describe a series of experiments
that we conducted for obtaining a better understanding of the
influence of different algorithmic components on the performance
of Beam-ACO. Afterwards we present an extensive experimental
evaluation on seven different sets of benchmark instances from
the literature.

4.1. Analysis of algorithmic components

With the aim of obtaining a better understanding of the
behavior of Beam-ACO, we conducted a series of experiments
with parameters kbw ¼ 10, m¼ 1:5, Ns ¼ 5, q0 ¼ 0:9, and a time
limit of 60 CPU seconds per run. These parameters were chosen
after some tuning by hand. Each experiment described in the
following was repeated 25 times with different random seeds.

For the purpose of studying the influence of the pheromone
information, which is used for the construction process of
probabilistic beam search as well as for stochastic sampling, we
performed experiments with a version of Beam-ACO in which the
pheromone update was switched off. This has the effect of
removing the learning mechanism from Beam-ACO. In the
presentation of the results this version is denoted by no ph.
Moreover, we wanted to study the importance of stochastic
sampling. Remember that, at each step of probabilistic beam
search, a number of maximally bm � kbwc extensions of partial
solutions are chosen. Then, based on the results of stochastic
sampling, procedure Reduce removes extensions until only the
best kbw extensions with respect to stochastic sampling are left. In
order to learn if this reduction step is important, we repeated all
the experiments with a version of Beam-ACO in which m¼ 1 and
kbw ¼ 15. The setting of kbw ¼ 15 was chosen in order to be fair
with the algorithm version that uses parameter settings m¼ 1:5
and kbw ¼ 10. Note that when m¼ 1, procedure Reduce is never
invoked and stochastic sampling is never performed. This is

because with m¼ 1 never more than kbw candidate extensions will
be chosen, which makes the use of Reduce unnecessary. In the
presentation of the results the corresponding version of Beam-
ACO is denoted by no ss. Finally, we study how important
stochastic sampling is as an estimate. This was done by applying it
only after a certain number of construction steps of each
probabilistic beam search, that is, once the partial solutions in
the beam of a probabilistic beam search contain already a certain
percentage of the total number of customers. More specifically,
for the first ðn�ðrs � nÞ=100Þ construction steps of probabilistic
beam search, stochastic sampling is not used at all. Instead,
Reduce simply selects kbw partial solutions at random. In contrast,
for the remaining ðrs � nÞ=100 construction steps of probabilistic
beam search, procedure Reduce uses the estimate provided by
stochastic sampling for the elimination of partial solutions.
Henceforth, we refer to parameter rs as the rate of stochastic

sampling. The value of this parameter is given as a percentage,
where 0% means that no stochastic sampling is ever performed,
while 100% refers to the Beam-ACO approach that always uses
stochastic sampling. In our experiments we tested the following
rates of stochastic sampling: rsAf25%;50%;75%;85%;100%g. In
the presentation of the results the corresponding algorithm
versions are simply denoted by their value of parameter rs.

Experiments without local search: Fig. 2 shows the results of the
different experiments described above for five representative
problem instances from the benchmark set provided by Potvin
and Bengio [24]. These results were obtained without using local
search. The barplots (in gray) compare the results with respect to
the mean ranks obtained by each algorithm version over 25 runs.
The ranks are calculated by sorting all solutions lexicographically.
Moreover, the standard deviations of the ranks are shown as error
bars. On the other hand, the boxplots (in white) show the
distribution of computation time in seconds required by each
algorithm version. Note that the notion of computation time
refers to the time at which the best solution of a run was found.

The following conclusions can be drawn from Fig. 2. First,
when no pheromone information is used (no ph), the perfor-
mance of the algorithm drops significantly. Second, the use of
stochastic sampling seems essential to achieve satisfactory
results. When no stochastic sampling is used (no ss), the results
achieved are worse than the ones obtained by Beam-ACO with
stochastic sampling, and the algorithm requires significantly more
computation time. Finally, the results of the algorithm variants
using different rates of stochastic sampling show a clear pattern.
The performance of the algorithm increases with increasing rate
of stochastic sampling. Starting from rates of stochastic sampling
of at least 75%, the performance of the algorithm is already very
close to the performance of Beam-ACO when always using
stochastic sampling. This result indicates that stochastic sampling
helps the algorithm to converge to better solutions.

Experiments with local search: We repeated the above experi-
ments, this time enabling local search. Fig. 3 shows the
corresponding results. First, the local search that we
implemented is very effective, hence, when enabled, some
instances become easily solvable (e.g. rc.203.3). Moreover, the
computation time needed by the algorithm enhanced with local
search is in general much lower than the computation time
needed by the algorithm not using local search. This is because
when local search is enabled, the algorithm can reach good
solutions much quicker. It is also worth to mention that
pheromone information and stochastic sampling are still
necessary, even when using local search. This is confirmed by
the fact that, in general, algorithm performance drops
significantly when disabling pheromone information (see
algorithm version no ph) and without the use of stochastic
sampling (see algorithm version no ss). Interestingly, the

Table 1

Setting of kib , krb and kbf depending on the convergence factor cf and the Boolean

control variable bs_update.

bs_update false true

cf [0, 0.4) [0.4,0.6) [0.6,0.8) [0.8,1] –

kib 1 2/3 1/3 0 0

krb 0 1/3 2/3 1 0

kbf 0 0 0 0 1
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algorithm behaves now differently for what concerns the
rate of stochastic sampling. Remember that when no local
search is used, the algorithm performed better when the rate of
stochastic sampling was high. In contrast, when local search was
used rather low values of stochastic sampling seem to be advised.
In order to avoid having to fine-tune the rate of stochastic
sampling for the final experimentation we decided instead
to reduce the time spent by stochastic sampling simply by
reducing the number of samples taken for each partial solution. As
shown in the following section, the resulting algorithm is able to
achieve state-of-the-art results on most sets of benchmark
instances.

4.2. Comparison to the state of the art

In the following we compare the performance of Beam-ACO
with the results of the best algorithms found in the literature. For

this purpose we consider seven available sets of benchmark
instances:

1. The first set consists of 30 instances originally provided by
Potvin and Bengio [24] and derived from Solomon’s RC2
VRPTW instances [25]. These instances are very diverse in
structure. The number of customers (n) ranges from 3 to 44
customers.

2. The second set of benchmark instances, by Langevin et al. [4],
consists of seven instance classes of 10 instances each.
Instances are grouped by number of customers and time
window width.

3. The third benchmark set consists of 27 classes of five instances
each. All instances were proposed and solved to optimality by
Dumas et al. [5]. Instance size ranges from 20 to 200
customers.

4. Gendreau et al. [11] provided the fourth benchmark set
consisting of 120 instances grouped into 26 classes with equal

Fig. 2. Results concerning the analysis of Beam-ACO with local search disabled. From top to bottom the graphics concern instances rc.203.3, rc.204.1, rc.207.2, rc.208.1, and

rc.208.3.
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number of customers and time window width. These instances
were obtained from the instances proposed by Dumas et al. [5]
by extending the time windows by 100 units, resulting in time
windows in the range from 120 to 200 time units.

5. The fifth set of benchmark instances, proposed by Ohlmann
and Thomas [13], contains 25 instances grouped into five
classes. The instances were derived from the instances with
150, respectively 200, customers proposed by Dumas et al. [5]
by extending the time windows by 100 time units.

6. The sixth benchmark set consists of 50 asymmetric TSPTW
instances introduced by Ascheuer [26]. These are real-world
instances derived ‘‘from an industry project with the aim to
minimize the unloaded travel time of a stacker crane within an
automated storage system’’. They were tackled by Ascheuer
et al. [6], Focacci et al. [9], and Balas and Simonetti [7].

7. Finally, the seventh benchmark set contains 27 symmetric
instances proposed by Pesant et al. [8]. While they were

derived from Solomon’s RC2 VRPTW instances [25], they are
different from the instances proposed by Potvin and Bengio
[24]. These instances were also utilized by Focacci et al. [9].

We performed a set of preliminary experiments in order to find
appropriate parameter settings. The goal of these preliminary
experiments was to find parameter values that produce overall
good results across most instances, even if they were not the
optimal settings for all instances. On the basis of these experi-
ments we chose kbw ¼ 5, m¼ 1:5, Ns ¼ 1, q0 ¼ 0:9, and a time limit
of 60 CPU seconds per run and per instance. Local search was
always enabled. Results are presented in the same way as in the
state-of-the-art paper by Ohlmann and Thomas [13]. In particular,
we provide the relative percentage deviation (RPD), that is,
100 � ðvalue � best-knownÞ=best-known. Since Beam-ACO is a
stochastic algorithm, we provide both the mean and standard
deviation (sd) of the RPD values over 15 runs with different
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Fig. 3. Results concerning the analysis of Beam-ACO with local search enabled. From top to bottom the graphics concern instances rc.203.3, rc.204.1, rc.207.2, rc.208.1, and

rc.208.3.
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random seeds. We also provide the mean and standard deviation
of the CPU time (Tcpu) required to find the best solution returned
by each run of the Beam-ACO algorithm. For completeness, and
following Ohlmann and Thomas [13], we also provide the CPU
times reported in the original publications of each algorithm. All
CPU times are rounded to seconds, since differences smaller than
one second are irrelevant in this context. These CPU times,
however, were obtained with very different languages and
computer systems, and hence, are not directly comparable.
After the presentation of the results we provide a discussion on
computation time in Section 4.4.

Table 2 shows the results obtained by Beam-ACO for the
instances by Potvin and Bengio [24]. The results are shown in
comparison with compressed annealing (CA) [13], a dynamic
programming algorithm (DP) [7], and the best results obtained by
previous heuristic methods [11,12]. Although the results reported
in Calvo [12] are generally better than those reported by
Gendreau et al. [11], this is not true for a few instances (marked
with a b) where Calvo’s algorithm obtained higher travel cost or
was not able to find a feasible solution. The fact that Beam-ACO
usually obtains standard deviations of zero suggests that Beam-
ACO is able to obtain the optimal solutions in all runs for most
instances. By comparison, CA shows a higher variability of the
results. The performance of DP is extremely good on some
instances and quite bad on others. The heuristics outperform

Beam-ACO on two instances, rc208.1 and rc204.1 (see the
footnote marked with an exclamation mark). However, they are
generally worse than Beam-ACO and CA for most of the instances.
Moreover, Beam-ACO is always able to find a feasible solution,
which is not the case for any of the other algorithms. In particular,
for three instances, CA only finds a feasible solution in 90% of the
runs.

Table 3 presents the results for the instances of Langevin et al.
[4]. Following Ohlmann and Thomas [13], we average the
statistics of 15 runs for each instance over the 10 instances of
each instance class. Beam-ACO is compared with the known
optimal solutions [12], and compressed annealing (CA) [13]. The
results of the heuristic method by Calvo [12] are comparable to
those obtained by CA, and, hence, they are not shown. Beam-ACO
is always able to obtain the best-known solution. In fact, this set
of instances seems to be easily solvable by any of the three
algorithms that were applied to this benchmark set.

Table 4 shows results for the instances proposed by Dumas
et al. [5]. The statistics of 15 applications to each instance are
averaged over the five instances of each instance class. We
compare Beam-ACO with results obtained by an exact method [5],
compressed annealing (CA) [13], and the best value achieved
among the following three algorithms (Heuristic): Calvo [12],
Gendreau et al. [11], and the tabu search of Carlton and Barnes
[10]. In terms of quality, Beam-ACO shows the highest robustness,

Table 2
Results for instances from Potvin and Bengio [24].

Instance n Best known Beam-ACO CA [13] DP [7] Heuristic

Mean RPD Sd. RPD Mean Tcpu Sd. Tcpu Mean RPD Sd. RPD Mean Tcpu RPD Tcpu RPD Tcpu

rc201.1 20 444.54 0.00 0.00 0 0 0.00 0.00 5 0.00a 2 0.00b 0

rc201.2 26 711.54 0.00 0.00 0 0 0.00 0.00 6 0.00a 3 0.00b 0

rc201.3 32 790.61 0.00 0.00 2 3 0.00 0.00 9 0.00a 4 0.00b 3

rc201.4 26 793.64 0.00 0.00 0 0 0.00(90%) 0.00 6 0.00a 3 0.00b 0

rc202.1 33 771.78 0.00 0.00 0 0 0.05 0.02 11 0.07 223 0.05b 8

rc202.2 14 304.14 0.00 0.00 0 0 0.00 0.00 5 0.00a 2 0.00b 0

rc202.3 29 837.72 0.00 0.00 1 1 0.00 0.00 7 0.00a 45 0.22b 0

rc202.4 28 793.03 0.00 0.00 0 0 0.00 0.00 9 0.78 212 0.00b 2

rc203.1 19 453.48 0.00 0.00 0 0 0.00 0.00 7 0.00a 15 0.00b 0

rc203.2 33 784.16 0.00 0.00 0 0 0.00 0.00 11 3.14 404 0.00b 4

rc203.3 37 817.53 0.00 0.00 2 2 0.03 0.11 12 infeasible 0.23b 14

rc203.4 15 314.29 0.00 0.00 0 0 0.00 0.00 5 0.00a 3 0.00b 0

rc204.1 46 868.76(!) 1.14 0.00 11 10 1.34(90%) 0.35 14 infeasible 0.00b(!) 35

rc204.2 33 662.16 0.00 0.00 8 7 0.71 1.29 10 0.00 77 0.57b 8

rc204.3 24 455.03 0.00 0.00 0 0 0.96 0.50 9 2.46 639 0.00b 4

rc205.1 14 343.21 0.00 0.00 0 0 0.00 0.00 4 0.00a 2 0.00b 0

rc205.2 27 755.93 0.00 0.00 0 0 0.00(90%) 0.00 7 0.00a 5 0.00b 0

rc205.3 35 825.06 0.00 0.00 1 1 0.00 0.00 10 0.00 42 0.00b 21

rc205.4 28 760.47 0.00 0.00 5 5 0.00 0.00 7 0.00a 5 0.26c 6

rc206.1 4 117.85 0.00 0.00 0 0 0.00 0.00 3 0.00a 0 0.00b 0

rc206.2 37 828.06 0.00 0.00 0 0 0.01 0.04 11 0.00 33 1.70c 33

rc206.3 25 574.42 0.00 0.00 1 1 0.00 0.00 9 0.00 38 0.00b 0

rc206.4 38 831.67 0.00 0.00 3 2 0.10 0.24 11 0.00 46 0.71b 8

rc207.1 34 732.68 0.00 0.00 0 0 0.00 0.00 11 0.43 70 0.07b 4

rc207.2 31 701.25 0.00 0.00 7 5 0.00 0.00 10 0.00 61 2.40c 16

rc207.3 33 682.40 0.00 0.00 1 1 0.00 0.00 11 2.28 1128 0.29c 17

rc207.4 6 119.64 0.00 0.00 0 0 0.00 0.00 3 0.00a 0 0.00b 0

rc208.1 38 789.25 0.30 0.29 19 21 0.58 0.36 12 0.55 1141 0.00b 10

rc208.2 29 533.78 0.00 0.00 1 1 0.17 0.54 10 0.00 59 0.67b 2

rc208.3 36 634.44 0.00 0.00 12 11 0.95 0.84 11 3.32 122 2.31b 8

ð!Þ Note: Even after thorough testing the best result achieved by Beam-ACO for instance rc204.1 was 878.64. In contrast, the best value reported by Calvo [12] is 868.76.

Calvo [12] states that the instance has 44 customers, when in fact it has 46 costumers.

a Optimal value.
b Heuristic solution obtained by Calvo [12].
c Heuristic solution obtained by Gendreau et al. [11].
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achieving a feasible solution in all runs. Moreover, Beam-ACO
both finds the optimal solution and has a low variability in most
of the runs. In comparison, compressed annealing does not find a
feasible solution in all of the runs, e.g. in only 84% of the runs
performed for the instances with n¼ 150 and time window 60. On
the other hand, both Beam-ACO and compressed annealing
typically match or outperform the best-known heuristic values.

Table 5 compares the results of Beam-ACO with compressed
annealing (CA) [13] and the heuristic of Calvo [12] for the
instances proposed by Gendreau et al. [11]. These instances have

wide time windows, which means that available exact algorithms
have problems obtaining feasible solutions in a reasonable
computation time. The results of Gendreau et al. [11] for their
own instances are always worse and generally obtained in more
computation time than those reported by Calvo [12], and, hence,
they are not shown. In general, Beam-ACO obtains better results
than compressed annealing in terms of robustness, average
quality and low variability. In fact, for the instances with 60
customers and a time window width of 140, compressed
annealing finds a feasible solution in only 92% of the runs,

Table 3
Results for instances proposed by Langevin et al. [4].

Data set Best known Tcpu Beam-ACO CA [13]

n Time window width Mean RPD Mean Sd. RPD Mean Tcpu Mean Sd. Tcpu Mean RPD Mean Sd. RPD Mean Tcpu

20 30 724.7a 0 0.00 0.00 0 0 0.00 0.00 5

40 721.5a 1 0.00 0.00 0 0 0.00 0.00 5

40 20 982.7a 2 0.00 0.00 0 0 0.00 0.00 7

40 951.8a 7 0.00 0.00 0 0 0.00 0.00 7

60 20 1215.7 – 0.00 0.00 0 1 0.00 0.00 9

30 1183.2 – 0.00 0.00 0 0 0.00 0.00 12

40 1160.7 – 0.00 0.00 3 2 0.00 0.01 14

a Optimal solution [12].

Table 4
Results for instances proposed by Dumas et al. [5].

Data set Exact [5] Beam-ACO CA [13] Heuristic [12]

n Time

window

width

Optimal

value

Tcpu Mean RPD Mean

Sd. RPD

Mean Tcpu Mean

Sd. Tcpu

Mean RPD Mean

Sd. RPD

Mean Tcpu Mean

RPD

Mean Tcpu

20 20 361.2 0 0.00 0.00 0 0 0.00 0.00 5 0.00 0

40 316.0 0 0.00 0.00 0 0 0.00 0.00 5 0.00 0

60 309.8 0 0.00 0.00 0 0 0.00 0.00 5 0.00 0

80 311.0 0 0.00 0.00 0 0 0.00(98%) 0.00 5 0.00 0

100 275.2 1 0.00 0.00 0 0 0.00 0.00 6 0.00 0

40 20 486.6 0 0.00 0.00 0 0 0.00 0.00 7 0.00 3

40 461.0 0 0.00 0.00 0 0 0.00 0.00 10 0.00 3

60 416.4 4 0.00 0.00 1 0 0.00 0.02 12 0.00 5

80 399.8 8 0.00 0.00 1 1 0.05 0.25 12 0.00 5

100 377.0 31 0.00 0.00 4 4 0.11 0.27 12 0.00 6

60 20 581.6 0 0.00 0.00 0 1 0.00 0.03 13 0.00 8

40 590.2 1 0.00 0.00 1 1 0.12 0.41 16 0.00a 37

60 560.0 7 0.00 0.02 5 5 0.04 0.12 16 0.00 11

80 508.0 47 0.00 0.02 6 6 0.24(98%) 0.39 16 0.20 18

100 514.8 200 0.16 0.19 16 12 0.33 0.37 16 0.31 26

80 20 676.6 0 0.00 0.00 2 3 0.03 0.24 20 0.00 43

40 630.0 3 0.00 0.00 2 9 0.02 0.03 21 0.00 69

60 606.4 55 0.12 0.10 18 12 0.13(98%) 0.26 21 1.72b 89

80 593.8 220 0.13 0.17 21 14 0.29(98%) 0.29 21 0.10 60

100 20 757.6 103 0.00 0.01 9 9 0.03 0.11 24 0.00a 175

40 701.8 129 0.03 0.07 14 12 0.06(86%) 0.14 25 0.14b 1

60 696.6 148 0.01 0.03 17 13 0.17(94%) 0.43 25 0.00 148

150 20 868.4 2 0.05 0.06 20 16 0.12 0.21 36 0.02 420

40 834.8 116 0.06 0.06 17 13 0.11 0.26 36 0.22b 5

60 805.0 463 2.09 0.21 29 18 2.10(84%) 0.60 37 1.91 630

200 20 1009.0 7 0.05 0.03 80 61 0.13(98%) 0.24 50 0.10 1456

40 984.2 251 0.08 0.06 115 80 0.25(98%) 0.17 50 0.12 2106

Results for n¼ 200 have a time limit of 300 seconds.

a The best-known heuristic solution value is found by Gendreau et al. [11].
b The best-known heuristic solution value is obtained by Carlton and Barnes [10].
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whereas Beam-ACO always finds a feasible solution. Although the
heuristic of Calvo [12] obtains the best known results for a few
instances, the average result of Beam-ACO is significantly better
for the remaining ones, being able to find new best-known
solutions in seven cases.

Table 6 examines the performance of Beam-ACO on the
instances proposed by Ohlmann and Thomas [13]. The only
algorithm ever applied to these instances is compressed annealing
from the same paper. These instances should be particularly
difficult for both heuristic and exact methods, since they involve a
large number of customers and wide time windows. For the usual
time limit of 60 seconds, the results of Beam-ACO are already
comparable to those of CA, slightly better for some instances and
slightly worse for others. For this instance set we additionally
applied Beam-ACO with a time limit of 300 seconds to each
instance. This was done in an attempt to assess if Beam-ACO was
able to further improve when given more computation time. The

results show that this is indeed the case. Beam-ACO achieves a
significantly lower travel cost and lower variability than CA.

Table 7 concerns the results obtained for the asymmetric
instances proposed by Ascheuer [26]. Results are given for Beam-
ACO, dynamic programming (DP) [7], the branch-and-cut
algorithm (B&C) of Ascheuer et al. [6], and the hybrid exact
algorithm (Hybrid) of Focacci et al. [9]. The latter combines
constraint programming with optimization techniques based
on solving a relaxation of the original problem. They propose
two variants: one based on the assignment problem relaxation
(AP-bound), and another that also incorporates a Lagrangean
relaxation (Lagrangean-bound). Neither variant consistently
outperforms the other, and hence, for comparison with Beam-
ACO, we use the best result obtained by either of them. The
quality of the results of Beam-ACO is very good up to 150
customers, finding the best-known solution in most of the runs.
For higher number of customers, the results are still within 1% of

Table 5
Results for instances proposed by Gendreau et al. [11].

Data set Best known value Beam-ACO CA [13] Calvo [12]

n Time window width Mean RPD Mean Sd. RPD Mean Tcpu Sd. Tcpu Mean RPD Mean Sd. RPD Mean Tcpu Mean RPD Mean Tcpu

20 120 265.6 0.00 0.00 3 2 0.00 0.00 7 0.60 0

140 232.8 0.13 0.17 4 4 0.00 0.00 8 11.51 0

160 218.2 0.00 0.00 1 1 0.00 0.00 8 19.16 0

180 236.6 0.00 0.00 1 1 0.00 0.00 8 3.38 0

200 241.0 0.00 0.00 0 0 0.00 0.00 8 0.83 0

40 120 360.0 4.94 0.00 3 4 5.14 0.61 12 0.00 5

140 348.4 4.79 0.11 9 6 4.74 0.26 12 0.00 9

160 326.8 0.03 0.03 3 4 0.03 0.06 12 3.18 10

180 326.8 1.56 0.49 14 13 2.17 0.70 12 0.00 12

200 313.8 0.29 0.06 7 8 0.35 0.32 12 0.45 16

60 120 451.0 0.07 0.04 18 11 0.51 0.71 16 7.18 30

140 452.0a 0.18 0.07 10 8 0.49(92%) 0.51 16 0.53 28

160 448.6 3.63 0.04 11 9 3.72 0.45 16 0.00 34

180 421.2 0.33 0.28 1 14 0.85 1.28 16 2.75 41

200 427.4a 0.12 0.21 22 16 0.70 0.75 16 0.14 57

80 100 578.8a 0.40 0.26 22 16 – – – 0.24 72

120 541.4 0.65 0.24 17 12 0.42 0.52 20 1.55 64

140 506.8a 0.75 0.51 26 17 1.16 1.10 20 3.71 75

160 502.8 0.91 0.30 24 16 2.09 1.07 21 0.00 82

180 489.0 3.19 0.29 24 14 3.27 0.84 21 0.00 116

200 482.6 0.87 0.48 28 17 0.62 0.85 20 0.29 158

100 80 666.4 0.20 0.20 21 18 0.38 0.45 25 0.24 193

100 642.0 0.65 0.39 24 18 0.45 0.50 24 0.31 119

120 599.4a 0.60 0.37 22 16 0.77 0.55 24 2.50 167

140 550.2a 0.62 0.42 25 18 5.69 0.53 24 7.49 201

160 556.6a 0.93 0.56 31 18 5.91 0.65 24 2.48 214

a New best-known solution found by Beam-ACO.

Table 6
Results for instances proposed by Ohlmann and Thomas [13].

Data set Best known

value

Beam-ACO (Tcpu r60) Beam-ACO (Tcpu r300) CA [13]

n Time window

width

Mean

RPD

Mean Sd.

RPD

Mean

Tcpu

Sd.

Tcpu

Mean

RPD

Mean Sd.

RPD

Mean

Tcpu

Sd.

Tcpu

Mean

RPD

Mean Sd.

RPD

Mean

Tcpu

150 120 724.0 0.80 0.39 26 17 0.47 0.22 118 86 0.98 0.87 36

140 697.2a 1.64 0.62 32 16 0.85 0.46 132 77 1.15 0.82 36

160 672.6a 1.16 0.65 32 14 0.54 0.28 144 83 1.38 0.85 36

200 120 806.4a 1.50 0.69 37 12 0.55 0.33 144 73 1.50 0.93 50

140 802.4a 1.48 0.66 40 10 0.69 0.44 166 73 1.31 0.81 49

a New best-known solution found by Beam-ACO.
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the best-known solutions. Furthermore, Beam-ACO is able to find
a feasible solution for all instances and in all runs, whereas DP
fails to find a feasible solution for two instances. In general, both
DP and Hybrid outperform B&C, however, neither DP nor Hybrid
are consistently better than B&C for all instances. For some
instances they find the optimal solution very fast (e.g. DP on
rbg152), whereas for other instances they require a long
computation time (e.g. Hybrid on rbg040a). Sometimes their
results are worse than those obtained by Beam-ACO even after
very long running times (e.g. rbg050b and rbg050c). For large
instances (n4150), Beam-ACO is able to obtain good
approximations (less than 1% deviation) to the results obtained
by the exact algorithms within a much shorter computation time.

Table 8 provides the results for the symmetric instances
proposed by Pesant et al. [8]. For this benchmark set, previous
results are available from an exact algorithm based on constraint
programming by Pesant et al. [8] and from two variants of the
hybrid algorithm (Hybrid) by Focacci et al. [9]. In general, Hybrid
completely outperforms the results of Pesant et al. [8]. However,
when Hybrid fails to find an optimal solution, the best-known
solution is always found by Pesant et al. [8], who let their
algorithm run for a whole day. For this benchmark set, Beam-ACO
is not only able to find the optimal (or best-known) solution in all
runs for almost all instances but also requires significantly less
time than the exact algorithms, even considering hardware
differences.

Table 7
Results for asymmetric instances proposed by Ascheuer [26].

Instance n Best value Beam-ACO DP [7] B&C [6] Hybrid [9]

Mean RPD Sd. RPD Mean Tcpu Sd. Tcpu RPD Tcpu RPD Tcpu RPD Tcpu

rbg010a 12 671 0.00 0.00 0 0 0.00a 0 0.00a 0 0.00a,b 0

rbg016a 18 938 0.00 0.00 0 0 0.00a 1 0.00a 0 0.00a,b 0

rbg016b 18 1304 0.00 0.00 0 0 0.00a 2 0.00a 9 0.00a,b 0

rbg017.2 17 852 0.00 0.00 0 0 0.00a 5 0.00a 0 0.00a,b 0

rbg017 17 893 0.00 0.00 1 1 0.00a 2 0.00a 1 0.00a,b 0

rbg017a 19 4296 0.00 0.00 0 0 0.00a 3 0.00a 0 0.00a,b 0

rbg019a 21 1262 0.00 0.00 0 0 0.00a 2 0.00a 0 0.00a,b 0

rbg019b 21 1866 0.00 0.00 0 0 0.00a 3 0.00a 55 0.00a,b 0

rbg019c 21 4536 0.00 0.00 0 0 0.00a 8 0.00a 9 0.00a,b 0

rbg019d 21 1356 0.00 0.00 0 0 0.00a 2 0.00a 1 0.00a,b 0

rbg020a 22 4689 0.00 0.00 0 0 0.00a 8 0.00a 0 0.00a,b 0

rbg021.2 21 4528 0.00 0.00 2 2 0.00a 11 0.00a 0 0.00a,b 0

rbg021.3 21 4528 0.00 0.00 9 8 0.00a 11 0.00a 27 0.00a,b 0

rbg021.4 21 4525 0.00 0.00 0 0 0.00a 29 0.00a 6 0.00a,b 0

rbg021.5 21 4515 0.02 0.02 13 19 0.00a 76 0.00a 7 0.00a,b 0

rbg021.6 21 4480 0.00 0.00 8 6 0.00a 92 0.00a 1 0.00a,b 1

rbg021.7 21 4479 0.00 0.00 2 2 0.00 224 0.00a 4 0.00a,b 1

rbg021.8 21 4478 0.00 0.00 1 1 0.00 267 0.00a 17 0.00a,b 1

rbg021.9 21 4478 0.00 0.00 1 1 0.00 285 0.00a 26 0.00a,b 1

rbg021 21 4536 0.00 0.00 0 0 0.00a 8 0.00a 8 0.00a,b 0

rbg027a 29 5091 0.00 0.00 0 0 0.00 11 0.00a 2 0.00a,b 0

rbg031a 33 1863 0.00 0.00 1 1 0.00a 7 0.00a 2 0.00a,c 3

rbg033a 35 2069 0.00 0.00 0 0 0.00a 5 0.00a 2 0.00a,b 1

rbg034a 36 2220 0.09 0.00 2 2 0.00a 11 0.09a 1 0.09a,b 55

rbg035a.2 37 2056 0.04 0.02 15 17 0.15 650 0.00a 2 0.00a,b 37

rbg035a 37 2144 0.00 0.00 1 1 0.00a 7 0.00a 65 0.00a,b 4

rbg038a 40 2480 0.00 0.00 6 8 0.00a 8 0.00a 4232 0.00cb 0

rbg040a 42 2378 0.02 0.03 15 16 0.00a 13 0.00a 752 0.00cb 738

rbg041a 43 2598 0.06 0.06 34 15 0.00a 15 0.58 5h 0.04b 1800

rbg042a 44 2772 0.16 0.07 24 16 0.00a 61 0.87 5h 0.00a,b 150

rbg048a 50 9387 0.11 0.05 26 16 infeasible 0.38 5h 0.01b 1800

rbg049a 51 10 019 0.05 0.04 26 17 0.01 281 0.16 5h 0.03b 1800

rbg050a 52 2953 0.30 0.04 20 15 0.58 1123 0.00a 19 0.00ac 96

rbg050b 52 9863 0.05 0.04 28 15 0.06 360 0.30 5h 0.15c 1800

rbg050c 52 10 026 0.07 0.04 40 17 infeasible 0.08 5h 0.15b 1800

rbg055a 57 3761 0.00 0.00 11 14 0.00a 16 0.00a 6 0.00a,b 2

rbg067a 69 4625 0.00 0.02 15 13 0.00a 18 0.00a 6 0.00a,b 4

rbg086a 88 8400 0.06 0.05 24 19 0.00a 18 0.01 5h 0.42c 1800

rbg092a 94 7158 0.05 0.03 18 15 0.00a 30 0.25 5h 0.22c 1800

rbg125a 127 7936 0.05 0.04 32 19 0.00a 31 0.01a 230 0.47c 1800

rbg132.2 134 8191 0.45 0.14 38 17 0.00 1135 0.51 5h – –

rbg132 134 8468 0.19 0.08 27 16 0.00a 39 0.47 5h – –

rbg152.3 154 9791 0.15 0.06 35 15 0.00 2765 0.53 5h – –

rbg152 154 10 032 0.06 0.03 25 18 0.00a 37 0.09 5h – –

rbg172a 174 10 950 0.39 0.16 35 17 0.00 812 0.89 5h – –

rbg193.2 195 12 143 0.51 0.10 37 16 0.00 2138 0.58 5h – –

rbg193 195 12 535 0.29 0.14 37 15 0.00 807 0.30 5h – –

rbg201a 203 12 948 0.48 0.12 37 14 0.00 809 0.83 5h – –

rbg233.2 235 14 496 0.61 0.10 43 11 0.00 2505 0.77 5h – –

rbg233 235 14 992 0.56 0.15 42 10 0.00 975 0.65 5h – –

a Reported as optimal (there are small differences between the optimal values reported by Balas and Simonetti [7] and Focacci et al. [9]).
b AP-bound [9].
c Lagrangean-bound [9].
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4.3. Summary of the results

Summarizing the results above, Beam-ACO is able to obtain
optimal or near-optimal (less than 1% deviation) solutions in a
reasonable computation time for most benchmark instances available
in the literature. In comparison with compressed annealing (CA),
Beam-ACO performs slightly better in terms of quality, finding
feasible solutions in all runs and new best-known solutions in a few
cases. In comparison with the exact algorithms, Beam-ACO is a good
alternative when the goal is to obtain a good approximation in a very
short time. Beam-ACO is particularly good at finding feasible solutions
across a wide range of different instances.

The Beam-ACO algorithm discussed in this paper is hybridized
with an efficient local search, similar to the one used by other
algorithms for the TSPTW [10,13], whereas our previous work on
Beam-ACO [21,22] did not make use of any local search method and
was limited to one benchmark set. Therefore, we ran Beam-ACO
without local search for the seven benchmark sets studied in this
paper. Table 9 compares the mean RPD obtained by Beam-ACO with
and without local search for each benchmark set. The comparison
shows that Beam-ACO with local search always achieves the lowest
mean RPD and the differences with respect to Beam-ACO without
local search are large in most cases. In fact, Beam-ACO without local
search was not able to find a feasible solution in some runs, whereas
Beam-ACO with local search found a feasible solution in every run.
These results confirm the conclusions obtained from the experiments
presented in Section 4.1, which showed the benefit of adding the local
search method to Beam-ACO for the TSPTW.

4.4. Comments on computation time

The algorithms compared in this paper were implemented in
different programming languages and executed on very different

computer systems. For example, CA was coded in Cþþ and tested
on an unspecified AMD processor with 1.8 GHz and unknown
cache size [13], whereas the heuristic from Calvo [12] was
implemented in FORTRAN and executed on an Intel 486 CPU with
66 MHz. Therefore, it is very hard to make definitive conclusions
about the relative speed of the algorithms. Nevertheless, in
many cases the reported computation times provide valuable
information.

The comparison of Beam-ACO with CA is difficult, because both
algorithms were executed on modern processors and obtain
similar computation time. Comparing processor speeds, Beam-
ACO is probably slower, especially for the large instances
ðn4150Þ of Table 6. However, the results obtained in Section
4.1 suggest that reducing the rate of stochastic sampling in Beam-
ACO to 50% may significantly speed up the algorithm and improve
the quality of the results. Hence, there is still room for
improvement. Both Beam-ACO and CA are probably faster than
DP for some instance classes, according to the very large

Table 8
Results for symmetric instances proposed by Pesant et al. [8].

Instance n Best value Beam-ACO Previous results

Mean RPD Sd. RPD Mean Tcpu Sd. Tcpu RPD Tcpu

rc201.0 25 628.62 0.00 0.00 0 0 0.00a 0

rc201.1 28 654.70 0.00 0.00 0 0 0.00a 2

rc201.2 28 707.65 0.00 0.00 0 0 0.00b 0

rc201.3 19 422.54 0.00 0.00 0 0 0.00a 0

rc202.0 25 496.22 0.00 0.00 0 0 0.00b 1

rc202.1 22 426.53 0.00 0.00 0 0 0.00a 4

rc202.2 27 611.77 0.00 0.00 0 0 0.00a 3

rc202.3 26 627.85 0.00 0.00 0 0 0.00a 33

rc203.0 35 727.45 0.00 0.00 1 0 1.01c 1 day

rc203.1 37 726.99 0.00 0.00 3 3 0.04c 1 day

rc203.2 28 617.46 0.00 0.00 1 1 0.00b 94

rc204.0 32 541.45 0.00 0.00 0 0 0.00b 353

rc204.1 28 485.37 0.00 0.00 2 2 0.00b 3

rc204.2 40 778.40 0.00 0.01 19 14 0.08c 1 day

rc205.0 26 511.65 0.00 0.00 0 0 0.00b 8

rc205.1 22 491.22 0.00 0.00 0 0 0.00a 0

rc205.2 28 714.69 0.00 0.00 1 1 0.00a 1289

rc205.3 24 601.24 0.00 0.00 0 0 0.00a 5

rc206.0 35 835.23 0.00 0.00 5 5 0.00b 338

rc206.1 33 664.73 0.00 0.00 3 3 0.00b 23

rc206.2 32 655.37 0.00 0.00 2 2 0.00b 24

rc207.0 37 806.69 0.00 0.00 0 0 0.00a 572

rc207.1 33 726.36 0.00 0.00 2 2 0.00b 322

rc207.2 30 546.41 0.00 0.00 0 0 0.00b 15

rc208.0 44 820.56 0.00 0.00 7 8 0.07c 1 day

rc208.1 27 509.04 0.00 0.00 2 2 0.00b 34

rc208.2 29 503.92 0.00 0.00 1 1 0.00b 1

a Optimal solution found by Hybrid [9] (AP-bound).
b Optimal solution found by Hybrid [9] (Lagrangean-bound).
c Best solution found by Pesant et al. [8].

Table 9
Mean RPD obtained by Beam-ACO with and without local search.

Benchmark set Mean RPD

With LS Without LS

Potvin and Bengio [24] (Table 2) 0.05 1.00

Langevin et al. [4] (Table 3) 0.00 0.17

Dumas et al. [5] (Table 4) 0.10 4.30

Gendreau et al. [11] (Table 5) 0.99 9.48

Ohlmann and Thomas [13] (Table 6, Tcpu r60) 1.32 29.71

Ohlmann and Thomas [13] (Table 6, Tcpu r300) 0.62 27.06

Ascheuer [26] (Table 7) 0.05 2.15

Pesant et al. [8] (Table 8) 0.00 1.49

M. López-Ibáñez, C. Blum / Computers & Operations Research 37 (2010) 1570–15831582



Author's personal copy
ARTICLE IN PRESS

computation times required by DP for some cases in Tables 2 and
7. From the large differences observed in Table 4, we can conclude
that the exact algorithm from 1995 [5] is faster than all the other
approximate algorithms for instances with small time window
width (less than 100). In fact, this exact algorithm is probably
state-of-the-art for these classes of instances. However, when
instances with a large time window width (100 or more) are
concerned the exact algorithm is probably slower than both
Beam-ACO and CA. As observed by Ohlmann and Thomas [13], the
heuristics of Calvo [12] and Gendreau [11] would be very fast
when executed on a modern processor, however, they do not
consistently obtain feasible solutions, and the quality of the
feasible solutions obtained by them is typically worse than the
solutions obtained by Beam-ACO. Finally, B&C [7], the hybrid
algorithm by Focacci et al. [9], and the exact algorithm based
on constraint programming by Pesant et al. [8] are not able
to outperform Beam-ACO for some instances even after such
extremely long computation times that the differences in
processor speed are irrelevant.

5. Conclusions

In this paper, we have proposed a Beam-ACO approach for the
TSPTW for minimizing the travel cost. Beam-ACO is a hybrid
between ant colony optimization and beam search that, in
general, relies heavily on bounding information that is accurate
and computationally inexpensive. We studied a version of Beam-
ACO in which the bounding information is replaced by stochastic
sampling. We also incorporated an effective local search proce-
dure to further improve the results.

We performed experiments to study the contribution of each
component of Beam-ACO, with and without local search. Our
results confirmed that the use of pheromone information and
stochastic sampling are needed for achieving a good performance,
even when a very effective local search is applied. In addition, we
carried out an extensive comparison comprising seven different
benchmark sets and including the best-known exact and heuristic
algorithms from the literature. The results showed that Beam-
ACO achieves, in general, better results than the existing heuristic
methods and is able to find good approximations in much shorter
time than exact methods. Moreover, Beam-ACO is better at
finding (good) feasible solutions than any of the methods
reviewed. Hence, our assessment is that the proposed Beam-
ACO can be seen as a state-of-the-art algorithm for the TSPTW
when considering travel-cost optimization. In the future, we plan
to extend this work to tackle the objective of makespan
minimization, which has received less attention from the
community.

References

[1] Savelsbergh MWP. Local search in routing problems with time windows.
Annals of Operations Research 1985;4(1):285–305.

[2] Christofides N, Mingozzi A, Toth P. State-space relaxation procedures
for the computation of bounds to routing problems. Networks 1981;11(2):
145–64.

[3] Baker EK. An exact algorithm for the time-constrained traveling salesman
problem. Operations Research 1983;31(5):938–45.

[4] Langevin A, Desrochers M, Desrosiers J, Gélinas S, Soumis F. A two-
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