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Abstract

In smart cities, when the real-time control of traffic lights is not possible, the global optimization of traffic-light programs (TLPs)
requires the simulation of a traffic scenario (traffic flows across the whole city) that is estimated after collecting data from sensors
at the street level. However, the highly dynamic traffic of a city means that no single traffic scenario is a precise representation of
the real system, and the fitness of any candidate solution (traffic-light program) will vary when deployed on the city. Thus, ideal
TLPs should not only have an optimized fitness, but also a high reliability, i.e., low fitness variance, against the uncertainties of
the real-world. Earlier traffic-light optimization methods, e.g., based on genetic algorithms, often simulate a single traffic scenario,
which neglects variance in the real-world, leading to TLPs not optimized for reliability.

Our main contributions in this work are the following: (a) the analysis of the importance of reliable solutions for TLP optimiza-
tion, even when all traffic scenarios are consistent with the real-world data and highly correlated; (b) the adaptation of irace, an
iterated racing algorithm that is able to dynamically adjust the number of traffic scenarios required to evaluate the fitness of TLPs
and their reliability; (c) the use of a large real-world case study for which real-time control is not possible and where data was
obtained from sensors at the street level; and (d) a thorough analysis of solutions generated by means of irace, a Genetic Algo-
rithm, a Differential Evolution, a Particle Swarm Optimization and a Random Search. This analysis shows that simple strategies
that simulate multiple traffic scenarios are able to obtain optimized solutions with improved reliability; however, the best results are
obtained by irace, among the algorithms evaluated.
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1. Introduction

Complex real-world systems may be optimized by combin-
ing heuristic optimization algorithms, evolutionary or other-
wise, with dynamic models [31] or simulations [16]. In such
simheuristics [18], the quality (fitness) of a candidate solution
is evaluated by means of simulation. However, any particular
simulation is not only an imperfect approximation of the real-
world system, but also the state of the real-world system is of-
ten dynamic and never completely known before the solution
is deployed on it [16]. A recurring question is how to address
the reliability of the solutions generated, such that the variance
of their fitness in the dynamic real-world system is as small as
possible [17].

The ultimate goal of our research is to improve the traffic-
light planning of the City of Málaga (Spain). As in many
real-world cities, the real-time control of traffic-lights [6] is
not feasible because of various reasons (legal, technical, etc.),
and we must instead find a highly-reliable global schedule of
traffic-lights that works well in the dynamic and uncertain tra-
ffic system [5, 9, 10, 11, 23, 24, 25, 26, 27, 28, 29]. When
optimizing the light cycle programs of traffic signals within a
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city in order to improve traffic flow and reduce pollution, the
fitness of a candidate traffic-light program is evaluated by sim-
ulating vehicle routes and velocities over a given traffic net-
work [10, 11, 20, 25, 29]. The simulation of traffic flows on a
specific city requires collecting network data (topology of the
area and information about traffic lights), which is usually pre-
cise and static, and traffic data (number of vehicles, their jour-
neys and velocities), which is estimated from highly dynamic
real-world data. Appropriate sensor placement is a fundamen-
tal requirement in the control of any junction [34], especially
when traffic light recognition is needed for autonomous vehi-
cles [30].

Given the inherent uncertainty of this estimation, it is possi-
ble to generate distinct traffic scenarios that are all consistent
with the real-world system [27]. One way to take into account
this uncertainty is to compute an aggregated fitness value by
simulating the same candidate solution multiple times by using
different traffic scenarios [9, 32]. An alternative (or additional)
way is to make each simulation itself stochastic by introducing
random changes to the traffic scenario during simulation [24].
The fitness of a reliable traffic-light program should not present
a high variance when evaluated on the dynamic traffic of the
real city.

Following previous works [17], we distinguish between re-
liability against noise and robustness. The latter measures un-
certainty caused by imprecision of the decision variables of the
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solution, which is not relevant for traffic-light optimization be-
cause solutions can always be implemented precisely. The for-
mer measures uncertainty in estimating fitness given a precise
solution, which is highly relevant because the fitness of a given
traffic-light program on the real-world system is never exactly
the one obtained in simulation.

Despite the inherent uncertainty of simulated traffic scenar-
ios, the literature on traffic-light optimization often relies on
deterministic simulation on a single traffic scenario [10, 11, 20,
23, 24]. When multiple scenarios are considered, they are ac-
tually used for evaluating the flexibility of the optimization al-
gorithm by optimizing each scenario separately [24]. More re-
cently, Ferrer et al. [9] validated the reliability of candidate so-
lutions on multiple scenarios after the optimization phase, how-
ever, each solution is still optimized with respect to a single
scenario.

In this paper, we advocate the simulation of multiple traffic
scenarios within traffic-light optimization to increase reliabil-
ity, and we demonstrate that it is possible to generate highly
optimized traffic-light programs with low variance across tra-
ffic scenarios derived from real-world data of the City of
Málaga. Our scenarios are larger (58 intersections, 275 traffic-
lights, 4, 827 vehicles) than other recent studies on traffic-
light scheduling (40 intersections, 184 traffic-lights, 500 ve-
hicles [11]) and much larger than those solved with real-time
control strategies (16–30 traffic-lights, 800 vehicles [6]).

Moreover, even when the fitness of random candidate solu-
tions is highly correlated for different scenarios generated from
the same real-world data, we show that an optimized solution
may have a high fitness variance across the scenarios. Moti-
vated by this result, we compare several simulation strategies
employing more than one traffic scenario per optimization run.
In particular, we incorporate classical resampling and iterative
resampling strategies [17] into a differential evolution (DE), ge-
netic algorithm (GA), particle swarm optimization (PSO), and
a random search (RS), the latter used as a baseline. Our results
demonstrate that resampling strategies using more than one tra-
ffic scenario significantly improve the reliability of the gener-
ated solutions.

Finally, we evaluate a fifth approach, namely, elitist iter-
ated racing [21], as implemented by the irace software, with
the goal of obtaining highly optimized and reliable traffic-light
programs. irace combines heuristic optimization and a rac-
ing method, based on F-race [4], to iteratively optimize can-
didate solutions for noisy black-box problems. In irace, sub-
sequent races re-use information from previous races and the
best (elites) solutions found can only be replaced by strictly
better solutions. Although racing is far less studied than
other methods for handling uncertainty in the evolutionary
optimization literature [17], its use is becoming increasingly
widespread [2, 12, 13, 14, 33]. Our results show that irace is
able to obtain optimized traffic-light programs with much lower
fitness and variance than those obtained by the GA with any of
the resampling strategies.

The paper is structured as follows. In Section 2, we define
the problem of optimizing the phases of traffic lights. Section 3
describes the traffic simulator SUMO and the algorithms com-

pared in this paper. Our experimental setup is presented in Sec-
tion 4, where we describe the real-world case study that mo-
tivated this research, the simulation strategies tested and other
experimental details. Results are analyzed in Section 5 and we
present our conclusions in Section 6.

2. Description of the problem

In a metropolitan area, traffic jams and congestion are one of
the biggest sources of greenhouse gas emissions, and therefore
contributors to global climate change. Urban traffic planning is
a way to improve mobility efficiency and safety, thus producing
a positive impact on the traffic flow. Particularly, the compu-
tation of optimal traffic light plans is mandatory, specially for
large urban areas, which motivates the Traffic Light Scheduling
Problem (TLSP) [11, 24, 25]. The goal in the TLSP is to find
an optimized traffic light program (TLP), that is, a combination
of phase durations for all traffic lights, in all intersections of a
given urban area, with the aim of improving the global flow of
vehicles by reducing the global journey time, emissions, and
fuel consumption.

Figure 1 illustrates an intersection showing one phase out of
a cycle of six valid phases, where each phase has eleven signals
(colors). The phase shown in the figure contains the state “rr
ggy rr yggg” meaning that five traffic lights are green (g), two
are yellow (y), and the other four are red (r). The yellow sig-
nals (y) indicate that each driver must prepare to stop if neces-
sary to let a driver on another direction proceed. The next phase
changes the state of the traffic lights to another valid combina-
tion, for example, “rr yyg rr gyyy” where the signals that were
green turn into yellow, and the signals that were yellow turn
into green. The last phase is followed by the first one, and this
cycle is repeated for the entire simulation. All the intersections
in the complete scenario perform their own cycles of phases at
the same time, thereby comprising the global schedule of signal
lights.

A formal definition of the TLSP is as follows. Let P =

{I1, . . . , In} be a candidate TLP, where each Ii corresponds
to a different intersection defined as a set of phases Ii =

{ϕi1, . . . , ϕimi }, where mi = |Ii| and each ϕi j represents the du-
ration of phase j in intersection Ii, that is, the duration of each
valid phase of light colors (e.g., “rr yyg rr gyyy”). Typically,
durations are defined as integral seconds, that is, ϕi j ∈ N+, as
done in real traffic lights. The objective is to find a TLP P′ that
minimizes a fitness function f : Γ→ R such that:

P′ = arg min
P∈Γ

{ f (P)} (1)

where Γ is the space of all possible TLPs. The fitness function
used in this work is explained next.

2.1. Fitness Function

The evaluation of a candidate solution to the TLSP, that is,
of a TLP P ∈ Γ, is typically performed by means of a traffic
simulator that provides information regarding the flow of vehi-
cles. Vehicles travel from a starting position (a point in the city
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Figure 1: Example of one phase of traffic lights within an intersection. Clock-wise from left-most: “rr ggy rr yggg”.

map or network) to a destination position. The simulation time
tsim defines the time steps available for the vehicles to complete
their journeys. The travel time (tv) of a vehicle v is the num-
ber of simulation steps (1 second per simulation step) in which
its speed was above 0.1 m/s, while its waiting time (wv) is the
number of simulation steps in which its speed was below 0.1
m/s.

An optimal TLP should maximize the number of vehicles
that reach their destination V(P) during the simulation time tsim

and, in consequence, minimize the vehicles that remain circu-
lating V rem(P) after the simulation time ends. Another desirable
behavior for a TLP is the minimization of the travel time tv and
waiting time wv for the V(P) vehicles that complete their jour-
ney.

Moreover, an optimal TLP should avoid long phase durations
(ϕi j) because the phase duration determines the length of time
that all traffic lights within the same intersection maintain their
current state, which typically contains both green and red sig-
nals. Usually, a traffic light in green signal regulating one direc-
tion means a red signal in other directions. Thus, a long phase
duration may lead to a collapse of the intersection due to traffic
accumulating in all directions but one. Besides, a good TLP
should also prioritize those phases with more traffic lights in
green on the directions with a high number of vehicles circulat-
ing, and traffic lights in red on the directions with a low number
of vehicles. We capture all these preferences in the following
ratio measure that should be maximized:

GR(P) =

n∑
i=1

|Ii |∑
j=1

ϕi j ·
Gi j

Ri j
(2)

where Gi j is the number of traffic lights in green, and Ri j is the
number of traffic lights in red in phase j of intersection i and ϕi j

is the duration of the phase. The minimum value of Ri j is 1 in
order to avoid division by 0.

Given the above criteria, we formulate the following fitness

function that should be minimized:

f (P) =

V rem(P) · tsim +
V(P)∑
v=1

tv(P) + wv(P)

V(P)2 + GR(P)
(3)

where the presence of vehicles with incomplete journeys
V rem(P) penalizes the fitness of a candidate solution P propor-
tionally to the simulation time tsim and the number of vehicles
that arrive at their destinations is squared (V(P)2) in order to
prioritize this criterion over the rest. This fitness function has
been successfully used in previous works [10, 11].

2.2. Constraints

Real-world instances of the TLSP often present additional
constraints. In our case, we consider the following constraints
recommended by the Mobility Department of the City Council
of Málaga (Spain).

Phases containing any yellow signals are called fixed phases
because they have a predetermined duration and the set of such
phases will be denoted by Y . There are two types of fixed
phases: (1) phases not corresponding to a pedestrian cross,
which last for a fixed time of 4 seconds, and (2) phases cor-
responding to a pedestrian cross, which last for a fixed time of
4 × number of lanes seconds. Non-fixed phases have a mini-
mum duration of ϕmin = 15 seconds. Moreover, the total cycle
time (T pi) within each intersection Ii, which is computed as the
sum of its phase durations:

T pi =

|Ii |∑
ϕi j∈Ii, j=1

ϕi j (4)

is constrained within [T pmin,T pmax]. For the City Council of
Málaga (Spain), T pmin = 60 and T pmax = 120 seconds.

By default, the first cycles of all intersections start at the same
time. However, we also optimize an offset time at each intersec-
tion (Toi) that represents a shift in seconds of the starting time
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of the cycle at the start of the simulation. If the offset value of
an intersection is negative, then cycle start time is shifted back
that number of seconds and the cycle actually starts on a phase
before the first one; whereas if the offset is positive, the cy-
cle begins as if that number of seconds has already passed, i.e.,
skipping those seconds from the duration of the first phase and,
maybe, of later phases. Offset times enable the emergence of
green waves, a series of coordinated traffic lights that produce
a continuous traffic flow over several intersections in one main
direction. Offset values are constrained within the time interval
Toi ∈ [Tomin,Tomax] = [−30, 30].

2.3. Solution Representation
In this work, each candidate solution to the TLSP is encoded

as a vector of integers, where values represent either the offset
of each intersection or the duration of a phase, adjusting the
minimum and maximum possible ranges given the constraints
described before. A repair mechanism, described later in Sec-
tion 2.4, is applied to enforce the total cycle time constraints
(Eq. 4). Figure 2 shows an example of the solution representa-
tion.

Taking into account that the duration of each phase (be-
fore repair) and the offset values are constrained by ϕ j ∈

[ϕmin,T pmax] ⊂ N+ and Toi ∈ [Tomin,Tomax] ⊂ Z, respec-
tively; then, given a problem instance with n intersections and
a total of M =

∑n
i=1 |Ii| non-fixed phases, the size of the solu-

tion space Γ can be estimated as |T pmax − ϕmin + 1|M + |Tomax −

Tomin + 1|n. In the network model of the city of Málaga stud-
ied here, we have 58 intersections and a total of 198 non-fixed
phases (ϕmin = 15, T pmax = 120, Tomin = −30, Tomax = 30),
thus the solution space contains 106198 + 6158 ≈ 1.025 · 10401

possible TLPs, that is, candidate solutions. Therefore, efficient
optimization algorithms are required to tackle this problem.

Intersection 1 . . . Intersection n
To1 ϕ11 ϕ12 . . . ϕ1 j . . . Ton ϕn1 ϕn2 . . . ϕn j

-25 20 25 . . . 35 . . . 15 60 8 . . . 30

Figure 2: Example of solution representation in the TLPS.

2.4. Repair procedure
We propose the following repair procedure to ensure that

candidate solutions are valid. The value of each phase dura-
tion ϕi j is already constrained within a range that is larger than
the minimum phase duration (ϕmin). However, we need to en-
sure that the total cycle time T pi is within [T pmin,T pmax]. Here
we can distinguish two different cases.

In the first case, if the total cycle time for intersection Ii is
smaller than T pmin, then we replace each non-fixed phase (those
that do not contain a yellow signal, i.e., ϕi j < Y) with

ϕi j =

⌈
ϕi j ·

T pmin − T pY
i

T pi − T pY
i

⌉
(5)

where T pY
i =

∑
ϕi j∈Ii∩Y ϕi j is the sum of the fixed phase dura-

tions within intersection Ii.

For example, let us imagine an intersection with a pedestrian
crossing composed of the following phases: “gg” and “yy” with
durations 40 and 8, respectively. Since the sum of the complete
cycle is T pi = 48, which is less than T pmin = 60, we need to
repair the decision variables of this intersection. The phase “yy”
has a fixed duration of 8. Thus, we apply Eq. 5 to the duration
of the phase “gg” as follows

ϕ“gg“ =

⌈
40 · (60 − 8)

48 − 8

⌉
= 52

In the second case, if the total cycle time is larger than T pmax,
then we replace each non-fixed phase (ϕi j < Y) with

ϕi j = ϕmin +

⌊
(ϕi j − ϕmin) ·

T pmax − T pY
i − ϕmin · |Ii \ Y |

T pi − T pY
i − ϕmin · |Ii \ Y |

⌋
(6)

where |Ii \ Y | is the number of non-fixed phases within in-
tersection Ii and T pY

i is the total duration of the fixed phases
(those that contain a yellow signal) within intersection Ii.

Following the example above, let us assume the duration of
phase “gg” becomes 120. The sum of the total cycle becomes
T pi = 128, that is, larger than T pmax = 120, hence it needs to
be repaired using Eq. 6. The repaired duration of phase “gg” is
calculated as follows

ϕ“gg“ = 15 +

⌊
(120 − 15) · (120 − (15 + 8))

128 − (15 + 8)

⌋
= 15 + 97 = 112

(7)

3. Algorithms

In this section we present different approaches to tackle the
TLSP. First, we introduce the SUMO simulator and the SUMO
Cycle Program Generator (SCPG) algorithm provided with the
SUMO package. Second, we describe irace and explain how
we adapt the elitist irace to the TLSP. Third, we describe a ge-
netic algorithm that has shown to be very effective in optimiz-
ing the traffic system in various applications. We also describe
the adaptation of differential evolution and particle swarm op-
timization to this problem, for the sake of comparison. Finally,
we describe a basic random search as a baseline optimizer for
our comparison.

3.1. SUMO Simulator and SCPG Algorithm

SUMO (Simulator of Urban Mobility) [3, 19] is a micro-
scopic road traffic simulator that provides detailed information
about vehicles’ velocity, fuel consumption, emissions, journey
time, etc, enabling the study of realistic scenarios according to
real patterns of mobility of the target city. We need a micro-
scopic model and simulator due to the need for fine-grained
realistic simulations.

SUMO requires several input files that describe the static net-
work data, that is, the topology of the area to be simulated and
the valid combinations of phases of the traffic lights; the dy-
namic traffic scenario, that is, the number of vehicles, journeys,
traffic flow and vehicle characteristics; and a complete traffic
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light program (TLP). When the simulation ends, SUMO returns
information about vehicles journeys (each vehicle’s departure
and arrival time, its travel time, and its time waiting in traffic
lights) that may be used to evaluate the quality of a traffic light
program. SUMO also provides estimates of emission traces in
vehicles and fuel consumption.

The SUMO package [3] includes a greedy deterministic al-
gorithm based on human expert rules and knowledge called
SCPG. The SCPG algorithm generates a complete TLP by as-
signing values to the phase durations according to three differ-
ent factors: the proportion of green signals in the phases, the
number of incoming lanes into the intersection, and the braking
time of the vehicles approaching the traffic lights.

For the traffic scenarios used in our experiments, the solu-
tions returned by the SCPG algorithm satisfy the constraints on
total cycle time, but they sometimes violate the minimum phase
duration, thus we apply the repair procedure explained in Sec-
tion 2.4 to make the solutions feasible.

3.2. irace
We have adapted elitist irace [21] to solve the TLSP. Origi-

nally, irace was designed for automatically configuring the pa-
rameters of optimization algorithms over a number of train-
ing instances of a problem of interest. However, irace is es-
sentially an optimization method for mixed-variable black-box
noisy problems where solution fitness varies according to a
known blocking factor (different training instances, traffic sce-
narios, etc.) that induces between-blocks variance, i.e., variance
caused by evaluating the same solution on different blocks. In
addition, fitness may be affected by unspecified within-blocks
variance, i.e., variance from re-evaluating the same solution
within the same block.

When applying irace to the TLSP, irace searches for an op-
timal traffic light program (TLP) for a given network file over
a training set of traffic scenarios. The fitness of each candi-
date TLP, i.e., a potential solution to the TLSP, is calculated by
simulating it, by means of SUMO, on the given network file to-
gether with one of the traffic scenarios. Evaluating the same so-
lution on the same network data with a different traffic scenario
will likely lead to a slightly different fitness. Reliable candi-
date TLPs should have small fitness variance between different
traffic scenarios.

An outline of irace is given in Algorithm 1. A run of irace
starts by creating an initial population of candidate solutions
uniformly randomly (line 2). The size of this initial popula-
tion (Θ1) is by default dynamically computed, according to the
number of decision variables and the computational budget (to-
talEvals). Then, a race is performed (line 3). Within a race
(Fig. 3), each candidate solution θi is evaluated a number of
times. Each evaluation requires a simulation on a different tra-
ffic scenario (S k). By default, each candidate solution is evalu-
ated on at least T first traffic scenarios, then a statistical test (the
Friedman test) is performed in order to identify candidate so-
lutions that should be discarded because they are statistically
worse than the best solution so far. After the first test, the race
continues by evaluating surviving solutions on additional traffic
scenarios and performing again the test. The race stops when
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Figure 3: Illustration of racing for the TLSP. Each node is the simulation of
one candidate solution (TLP) θi on one training traffic scenario S k . ‘×’ means
that no statistical test is performed, ‘−’ means that the test discarded at least
one candidate solution, ‘=’ means that the test did not discard any candidate
solution. In this example, T first = 5.

a minimum number of solutions remain alive or a maximum
number of simulations for this race have been performed.

Algorithm 1 Pseudocode of irace
Input: Network data and training traffic scenarios.
Output: Best solution (TLP) found.

1: t ← 1
2: Θt ← CreateRandomPopulation()
3: Θelite ← Race(Θt)
4: while evals < totalEvals do
5: t ← t + 1
6: M← Update(Θelite)
7: Θnew ← Sample(M)
8: Θt ← Θnew ∪ Θelite

9: Θelite ← Race(Θt)
10: end while
11: Output: best solution from Θelite

After the race (line 3 in Algorithm 1), the best surviving solu-
tions become the elite population (Θelite). These elite solutions
are used by irace to update a sampling distribution M, which
is used to create new candidate solutions (line 7). In particu-
lar, the value of each decision variable for each new solution is
sampled from a Gaussian distribution with mean equal to the
value that decision variable has on an elite solution and a vari-
ance that decreases with the number of iterations. More details
about this sampling can be found in [21]. The number of so-
lutions sampled is dynamically decided by irace depending on
the number of evaluations left until totalEvals and the number
of races performed so far. The union of the new solutions and
the elite population forms a new population that is subjected
again to racing (line 9). Sampling and racing are iterated until
reaching a maximum number of evaluations (totalEvals), mea-
sured as number of calls to the SUMO simulator.

In the elitist version of irace, an elite solution cannot be dis-
carded until all competing solution have been evaluated on as
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many traffic scenarios as the elite one. In addition, informa-
tion is shared across successive races so that solutions are never
re-evaluated on the same traffic scenario. Finally,the sequence
of traffic scenarios is reshuffled at each race in order to mini-
mize the potential bias of a particular order of evaluation. More
details about elitist irace are provided in the original publica-
tion [21].

Adapting irace to the TLSP required adding the ability of
repairing candidate solutions, as explained in section 2.4. This
modified irace is publicly available starting from version 2.3. In
addition, the input to irace is generated by parsing the SUMO
input files and the values defining the various constraints of the
particular TLSP instance tackled here.

3.3. Genetic Algorithm
Genetic algorithms [1] have shown to be very effective in

optimizing the traffic system in different ways: for a single in-
tersection [28], for optimizing the traffic flow control [29], or
for validating traffic light programs in different scenarios [9].

Algorithm 2 sketches the pseudocode of our GA for comput-
ing an optimized TLP. It receives as inputs the SUMO input files
for the instance under study, that is, the network data and a set
of training traffic scenarios. How and how many of these traffic
scenarios are used to evaluate the fitness of a candidate solution
defined by a simulation strategy. In this paper, we will compare
several possible simulation strategies that are described later in
Section 4.2. Initially, the algorithm creates a uniformly random
population of individuals (line 2) and enters an inner loop that
applies the traditional steps of a generational GA (lines 5–17).
That is, some solutions (TLPs) are selected from the population
Θt, recombined and mutated. If a generated offspring solution
is not a feasible TLP (i.e., it violates a constraint of phase or
cycle duration), then it is transformed into a valid TLP by ap-
plying the Repair operation (line 11) described in Section 2.4.
Finally, the offspring solutions are evaluated according to the
simulation strategy, and added to the new population Θnew. The
algorithm continues until reaching a maximum number of eval-
uations (totalEvals), as in the case of irace.

Our implementation of the GA uses a ranking method for
parent selection and elitist replacement for the next popula-
tion, that is, the two best individual of the current population
are included in the next one. The operators used are uniform
crossover and integer polynomial mutation.

3.4. Differential Evolution
Differential evolution is an population-based evolutionary al-

gorithms that we have adapted in order to find optimal (or quasi-
optimal) cycle programs for traffic lights. In Algorithm 3 we
show the pseudocode of the DE algorithm. Since GA and DE
are evolutionary algorithms, their pseudocode is quite similar,
except for the absence of a mutation operator and the use of a
special crossover we briefly describe here.

Once the algorithm has selected three mutually different in-
dividuals from the population, a new individual is generated by
the following equation:

wz
i+1 = vr1

i + F · (vr2
i − vr3

i ) (8)

Algorithm 2 Pseudocode of GA
Input: Network data and training traffic scenarios.
Output: Best solution (TLP) found.

1: t ← 1
2: Θt ←CreateRandomPopulation()
3: Repair(Θt)
4: EvaluateFitness(Θt)
5: while evals < totalEvals do
6: Θnew ← ∅ // auxiliary population
7: for i← 1 to populationSize/2 do
8: Θparents ← Selection(Θt)
9: Θoffspring ← Recombination(Θparents)

10: Θoffspring ← Mutation(Θoffspring)
11: Repair(Θoffspring)
12: EvaluateFitness(Θoffspring)
13: Θnew ← Θnew ∪ Θoffspring

14: end for
15: Θt+1 ← Replace(Θt, Θnew)
16: t ← t + 1
17: end while

where r1, r2, r3 ∈ (1, 2, . . . , z − 1, z + 1, . . . , populationSize)
are random mutually different integers, which are also different
from the index z. The parameter F > 0 stands for the ampli-
fication of the difference between the individuals vr2

i , v
r3
i . This

operator is applied according to the crossover probability.

Algorithm 3 Pseudocode of DE
Input: Network data and training traffic scenarios.
Output: Best solution (TLP) found.

1: t ← 1
2: Θt ←CreateRandomPopulation()
3: Repair(Θt)
4: EvaluateFitness(Θt)
5: while evals < totalEvals do
6: Θnew ← ∅ // auxiliary population
7: for i← 1 to populationSize do
8: Θparents ← Selection(Θt)
9: Θchild ← DE-Crossover(Θparents)

10: Repair(Θchild)
11: EvaluateFitness(Θchild)
12: Θnew ← Θnew ∪ Θchild

13: end for
14: Θt+1 ← Replace(Θt, Θnew)
15: t ← t + 1
16: end while

3.5. Particle Swarm Optimization

PSO [8] is a population-based metaheuristic with many dif-
ferent variants. We use here the Standard PSO 2011 [7], which
has been used previously to find optimal (or quasi-optimal) cy-
cle programs for traffic lights [15]. The pseudo-code of PSO
used in this experimentation is introduced in Algorithm 4. The
algorithm starts by initializing the swarm, which includes both
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Algorithm 4 Pseudocode of PSO
Input: Network data and training traffic scenarios.
Output: Best solution (TLP) found.

1: swarm← initializeSwarm()
2: Repair(swarm)
3: EvaluateFitness(swarm)
4: updateLeaders(swarm)
5: while evals < totalEvals do
6: for ß← 1 to S warmS ize() do
7: updateVelocity(pi)
8: updatePosition(pi)
9: Repair(pi)

10: EvaluateFitness(pi)
11: end for
12: updateLeaders(swarm)
13: end while

the positions and velocities of the particles pi (candidate solu-
tions). Positions correspond to locations in the decision space
and velocities are used to modify positions in future iterations.

The position of each particle is randomly initialized, and the
leader is computed as the best particle of the swarm. Then, for
a maximum number of evaluations, the velocity of each particle
is updated. After that, the position is updated according to the
velocities, and it is evaluated according to the strategy used.
At the end of each iteration, the leader of the swarm is also
updated. Finally, the best solution found so far is returned. For
further details, we refer to the original publications [7, 8].

3.6. Random Search

We also implemented a basic random search as a baseline for
evaluating irace and the GA. The pseudocode of the random
search (RS) algorithm is presented in Algorithm 5.

The RS receives the same input files as irace and the
GA. At each iteration of the main loop of the algorithm, a
new candidate solution (TLP) is generated by randomly sam-
pling the phase durations ϕi j from the discrete uniform dis-
tribution U{ϕmin, . . . , T pmax} and the offset values Toi from
U{Tomin, . . . ,Tomax}. The resulting solution may be repaired
(Sect. 2.4) to ensure that total cycle times T pi are within
[T pmin,T pmax]. As in the case of the GA, the fitness of the new
solution is then evaluated according to a simulation strategy by
performing one or several simulations using different traffic sce-
narios. The possible simulation strategies are explained later in
Sect. 4.2. Finally, the new solution replaces the best-so-far so-
lution if the former has better fitness than the latter (lower in this
case, because Eq. 3 should be minimized). Like the other algo-
rithms, RS stops when reaching a maximum number of simula-
tions (totalEvals).

4. Experimental Setup

In this section, we describe the experimental protocol fo-
llowed in the rest of the paper. First, we describe the real-world
case study of TLSP optimization that is the main motivation of

Algorithm 5 Pseudocode of RS
Input: Network data and training traffic scenarios.
Output: Best solution (TLP) found.

1: bestSolution←∅
2: while evals < totalEvals do
3: newSolution← CreateRandomSolution()
4: Repair(newSolution)
5: EvaluateFitness(newSolution)
6: bestSolution← Replace(bestSolution, newSolution)
7: end while

our research. Next, we introduce the various simulation strate-
gies analyzed in our experiments. Finally, we provide details
about the experiments carried out, which are analyzed in the
next section.

4.1. Real-world Case Study

We consider a realistic scenario derived from the traffic net-
work of Málaga [27]. The selected urban area is delimited to the
north by San Bartolomé Street and Ferrándiz Street, to the west
by the Guadalmedina River, to the east by Keromnes Street, and
to the south by the Mediterranean Sea, which encompasses an
area of about 3 km2 with 58 intersections controlled by 275 tra-
ffic lights (Fig. 4). This urban area encompasses several traffic
zones whose signals are currently scheduled independently, but
we will optimize simultaneously. Our network model was cre-
ated from real data about traffic rules, traffic element locations,
buildings, road directions, streets, intersections, etc.

Figure 4: Locations of traffic lights considered in the case of study. In this
figure the colors indicate large (red), medium (yellow) and small (green)
differences between two different solutions.

The static network of a city is not enough to define a realis-
tic scenario and we precise information about the dynamic tra-
ffic data. Hence, we defined the number of vehicles circulating
and their speeds by following current specifications available
from the Mobility Department of the Málaga’s City Council.
This information was collected from sensorized points in cer-
tain streets measuring traffic density at various time intervals.
Figure 5 shows the exact position of the sensorized points in
the area under study. From the sensed data extracted, we have
applied the Flow Generator Algorithm (FGA) [27] to generate
60 different traffic scenarios with an average of 4,827 vehicles
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(or different vehicle routes) per scenario. FGA is an evolution-
ary algorithm that creates vehicle routes minimizing the differ-
ences between the real data measured by the sensors and the
values obtained after the simulation of the map. The resulting
traffic scenarios are composed by different traffic flows with dif-
ferent number of vehicles passing through different streets, but
with the particularity that the generated traffic is similar to the
real traffic of a weekday.

In principle, any of the generated traffic scenarios is as realis-
tic as the others, since all of them are generated from the same
sensor data. Moreover, we must assume that the real traffic sce-
nario for a given day in the future is unlikely to precisely match
any of the traffic scenarios generated because of the implicit
uncertainty of a real traffic system. Thus, good traffic-light pro-
grams should be reliable, i.e., they should work well despite
small differences in traffic conditions, which are modeled by
the different traffic scenarios. In order to evaluate the reliability
of a candidate solution, we split the generated traffic scenarios
into two equal sets of 30 scenarios each. One (training) set is
exclusively used for optimization, that is, for identifying opti-
mal TLSP solutions. The other (testing) set of scenarios is used
for comparing the solutions found during optimization.

The number of traffic scenarios from the training set actu-
ally used during optimization (and in which manner) depends
on a particular simulation strategy. In principle, evaluating a
candidate solution over many traffic scenarios should lead to
identifying reliable solutions. However, given a fixed budget of
simulations, there is a trade-off between the number of different
candidate solutions evaluated and the number of traffic scenar-
ios simulated per solution. Different strategies distribute the
effort devoted to evaluating solutions in different ways. Strate-
gies that use fewer simulations to evaluate the fitness and reli-
ability of each solution are able to evaluate a higher number of
different candidate solutions. On the other hand, strategies that
use more simulations per solution will explore fewer candidate
solutions. In the following, we describe the various strategies
compared in our study.

4.2. Simulation Strategies

When dealing with real systems like traffic, it is not enough
to assume that one single simulation could capture the main
characteristics of the system under study. Therefore, several
simulations with random variations are necessary to properly
evaluate a solution. Reliable solutions, that is, those that re-
sult in similar fitness despite variations in traffic conditions, are
highly desirable for the traffic system, which is considered to
be critical due to its importance for the city operation [26].

We evaluate here the ability of racing, as implemented in
irace, for dealing with this uncertainty, and, as a baseline for
further comparison, we study here two additional strategies,
which we call All and Rand.

4.2.1. Racing
The evaluation strategy of irace is specially designed for

problems where at least part of the variation can be treated as
blocks and candidate solutions can be compared within each

block, which is sometimes called blocking or pairing in the de-
sign of experiments literature. A basic assumption in irace is
that some variability between blocks is expected, i.e., the rel-
ative quality of a candidate solution with respect to other so-
lutions depends on the actual block being evaluated; but the
variability is not completely random, i.e., over the whole set of
blocks, some candidate solutions are better than others. In the
context of the TLSP, a block is characterized by simulating on
a specific traffic scenario. It is not expected that a single TLSP
solution will be better for all possible traffic scenarios, however,
some TLSP solutions should have a better expected fitness over
the whole set of typical traffic scenarios for the city of Málaga.

In order to account for this type of variance, irace simulates
each candidate solution by means of racing on at least T first

different traffic scenarios, performs a statistical test to assess
whether there is enough evidence to discard this candidate so-
lution as worse than the best so far and, if not, performs addi-
tional simulations with new scenarios, applying the statistical
test after each simulation. The motivation for this approach is
that solutions that are clearly worse with low variance are dis-
carded as quickly as possible, whereas additional simulations
are performed only in cases where variance is higher and the
best solution is not immediately clear. Moreover, in elitist irace,
the best solution found can only be replaced by another candi-
date solution simulated on at least as many traffic scenarios,
which avoids elite solutions being replaced by solutions with
a few “lucky” simulations that actually are less reliable. The
disadvantage of such an approach for problems with little or no
variance is that, in the best case, irace requires T first (by de-
fault five) times more simulations per candidate solution than a
method not accounting for fitness variance.

4.2.2. All-N
The strategy All-N uses only N training traffic scenarios dur-

ing each optimization run. Each solution is simulated on all N
scenarios and its fitness is computed as the mean fitness over the
N simulations. For example, the strategy All-1 would use only
one traffic scenario per run, i.e., one simulation per solution and
always the same traffic scenario for every simulation. This is the
strategy adopted for problems without uncertainty, where there
is no noise due to simulation and no between-blocks variance.

4.2.3. Rand-N
The strategy Rand-N uses the whole training set of traffic

scenarios during each optimization run, from which it randomly
selects a subset of N scenarios at each iteration to evaluate so-
lutions. The fitness of each solution is computed as the mean
fitness over the N simulations. For example, the strategy Rand-
1 would randomly select one traffic scenario from the whole
training set at the first iteration, and use that traffic scenario to
compute the fitness of all solutions in the population; in the next
iteration, the fitness of new solutions is computed by simulating
them on new randomly selected scenario. This strategy aims at
creating reliable solutions that remain good over different traffic
scenarios even for low values of N.

Increasing the value of N in either All-N or Rand-N strat-
egy allows more precise estimation of the expected fitness of a
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(a) OpenStreetMap (b) SUMO map

Figure 5: Málaga case study: geographical area with sensor locations.

solution over many traffic scenarios, hopefully leading to more
reliable solutions. However, it also requires additional simula-
tions, which are typically time-consuming. Given a fixed bud-
get of simulations, the Rand-N strategy explores the same num-
ber of solutions as the All-N strategy, but larger values of N will
reduce this number, possibly resulting in solutions with worse
fitness being found.

4.3. Experimental Details

As mentioned above, we generated 60 traffic scenarios from
real sensor data and we split these scenarios into two sets of size
30. One set (training set) is used when running the optimizers
(irace, GA, DE, PSO and RS) to find TLSP solutions, while the
other set (testing set) is used for evaluating the fitness and reli-
ability of these solutions and comparing the various strategies
analyzed in this paper. During optimization, the traffic is simu-
lated up to a predefined time horizon (1 hour plus 10 minutes
of warm-up, in our case) in order to simulate the peak period in
our real-world case study.

When running the optimizers, we perform independent repli-
cations with different random seeds of each run of an algorithm.
In Figure 6, we show a summary of the experiments carried out
in this article. Both irace and the Rand-N strategy may use
the whole training set on each run, and we performed 30 inde-
pendent replications of each of their runs. The All-N strategy,
however, only uses a subset N of the training set and the ac-
tual subset may introduce a bias on the solutions found, e.g.,
if the subset contains a traffic scenario that is quite different
from the ones in the test set. To take into account this potential
bias, we repeat each run of the All-N strategy using a different
subset of the training set. In particular, for All-1, we perform
one run for each of the 30 training scenarios. For larger values
of N, exploring all possible subset combinations is not feasi-
ble. For example, even without replications, the All-5 strategy
would require

(
n
k

)
= 30C5 = 30!

5!(30−5)! = 142, 506. Instead, we
constructed 30 subsets of five traffic scenarios, where each sce-
nario appears in at least five different subsets, and we perform
one replication with each subset. In both All-1 and All-5, if the

particular subsets of the training scenarios do not influence the
result, then this setup is equivalent to performing 30 indepen-
dent replications. In total, each algorithmic variant generates
30 independent solutions.

Figure 6: Summary of the experiments performed. Different algorithms use
different simulation strategies. The number of simulations with different traffic
scenarios per solution is either N = 1 or N = 5 for both strategies All and
Rand, while this value is dynamically adjusted by irace within [T first, 30]. We
experimented with T first = 5 (default) and T first = 2. In order to avoid biases
when using only a subset of the training traffic scenarios, we evaluated dif-
ferent subsets. A single subset means that the whole training set is available
to that strategy. Finally, we performed independent replications (rep), i.e.,
algorithm runs with different random seeds, of each experiment. The column
total gives the number of different final TLSP solutions generated for each
variant tested.

After running the optimizers, the TLSP solutions generated
are simulated on all traffic scenarios from the testing set. These
are the results presented and analyzed in the next section.

In all experiments, we stop each run of an algorithm after
executing 30 000 calls to the SUMO simulator. We use default
settings for irace, unless noted otherwise. In particular, the pop-
ulation size of irace is dynamically adjusted by default and not
fixed. The GA uses a population size of 10, the probability of
crossover is 1.0 and the probability of mutation is 0.1. These
parameter settings were found by additional experiments car-
ried out in previous studies [5] to produce a search behavior
that is more exploitative rather than explorative, which is more
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appropriate for our problem. For the sake of a fair comparison,
the DE and the PSO also use a population of 10 individuals.
The DE strategy is “best/1/bin”, the difference factor is F = 0.5
and the probability of crossover is 0.5. The PSO acceleration
coefficient is 0.5 + log(2), the inertia 1/(2 log(2)), and the ve-
locity truncation factor is −0.5. These are the default parameter
values set by jMetal [22]. The random search does not have any
parameters.

All simulations were performed with SUMO version 0.22.
Since we already introduce variability by means of the different
traffic scenarios, we fix the random seed used by SUMO to zero
in all simulations. This means that, given a traffic scenario and
a candidate solution, the simulation is deterministic. Thus, we
enable the deterministic option in irace, which assumes that the
problem does not have within-blocks variance, but there is still
between-blocks variance.
irace is implemented in R and we used version 2.3, which

is available at https://cran.r-project.org/package=irace. The
GA, DE, PSO and RS are implemented in Java using jMetal
5.0 [22]. The source code of the standard operators used here is
publicly available at https://github.com/jMetal/jMetal.

The experiments were run on a cluster of 16 machines with
Intel Core2 Quad processors Q9400 (4 cores per processor) at
2.66 GHz and 4 GB memory and 2 nodes (96 cores) equipped
with two Intel Xeon CPU (E5-2670 v3) at 2.30 GHz and 64 GB
memory. The cluster was managed by HTCondor 8.2.7, which
allowed us to perform parallel independent executions to reduce
the overall experimentation time.

5. Experimental Analysis

One goal of our research is to identify the best optimization
method and simulation strategy for the real-world Traffic Light
Scheduling Problem (TLSP) of the city of Málaga (Spain), but
we believe that our methods, findings and conclusions are ap-
plicable to other cities. Our initial starting point was that, due
to the variability in traffic conditions, more complex simula-
tion strategies would be necessary to reach reliable and near-
optimal TLSP solutions. On the other hand, previous studies
have shown or assumed that the fitness of different simulations
under normal traffic conditions, i.e., on similar (homogeneous)
traffic scenarios, is highly correlated [10, 11, 20, 24]. Their con-
clusion was that the resulting fitness variance would be small
and no worth considering during optimization.

As a first step, we study the heterogeneity of the traffic sce-
narios by sampling 10 000 random solutions of our case study
and evaluating them on the 30 training traffic scenarios. Fig-
ure 7 shows the Spearman’s ρ correlation between the traffic
scenarios with respect to the fitness obtained by the random so-
lutions. A positive correlation means that the ranking of solu-
tions is not affected by the traffic scenarios whereas a negative
correlation means that solutions better on one traffic scenario
would perform worse on the other. As shown by the plot, al-
most all traffic scenarios are very highly correlated with no pair
of traffic scenarios showing any negative correlation, which is
expected since all scenarios are generated from the same sen-
sor data. Thus, a premature conclusion would be that solutions

optimized on one or a few traffic scenarios should be highly re-
liable and no complex simulation strategies are necessary. As
we will show next, this is not the case.
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Figure 7: Spearman’s ρ correlation between the results obtained by 10 000
randomly generated solutions (TLPs) on all training traffic scenarios.

5.1. Comparison of Simulation Strategies

The simplest and most common strategy corresponds to
All-1, i.e., use a single traffic scenario per optimization run.
This is the strategy followed by methods that do not expect any
noise or variance in the fitness function. A simple extension of
the All-1 strategy for handling noise is to evaluate a solution on
N traffic scenarios, then use the mean fitness as the fitness of the
solution (All-N). Since the default minimum number of traffic
scenarios simulated per solution by irace (T first) is five, we run
experiments with the GA, DE, PSO and RS using N = 5.

An alternative simulation strategy is Rand-1, which uses a
different random traffic scenario from the training set at each
iteration, i.e., new solutions in the population are evaluated at
each iteration on a new traffic scenario. The actual behavior
is that good solutions survive across iterations, whereas poor
solutions are quickly discarded. The downside is that solu-
tions that are “lucky” at a late iteration may replace solutions
that are generally reliable but “unlucky” on the same iteration.
Therefore, Rand-1 can be seen as an intermediate strategy be-
tween All-1 and racing. For completeness, we also evaluated
the Rand-5 strategy, where the fitness of a solution is computed
as the mean fitness over five traffic scenarios and these five tra-
ffic scenarios are randomly selected from the training set at each
iteration. Such strategy is expected to be more reliable against
last-minute “lucky“/“unlucky“ simulations at the cost of evalu-
ating five times fewer solutions.

We ran the GA, DE, PSO and RS using the four simulation
strategies described above and results are presented in Figs. 8
– 11, respectively. Each boxplot shows the distribution of fit-
ness of one TLSP solution on the 30 traffic scenarios of the
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testing set. Thus, the spread of the boxplot, including the out-
liers shown as points, indicates the reliability of one particular
solution.

In the case of the GA, strategy All-5 is statistically better in
mean fitness over all replications (0.1793) than the rest (pair-
wise Wilcoxon rank-sum test at 0.05 significance level with
Holm’s p-value correction). In the case of the DE, strategy
All-5 is the best in mean fitness over all replications (0.1768),
although the difference in means with the rest of strategies is
not statistically significant (using the same pairwise Wilcoxon
test). In the case of the PSO, strategy All-5 is statistically better
in mean fitness over all replications (0.3797) than the rest (pair-
wise Wilcoxon rank-sum test at 0.05 significance level with
Holm’s p-value correction). Finally, in the case of the RS, the
strategy Rand-1 obtains the lowest overall mean (0.3767), the
difference in means with All-5 is not statistically significant (us-
ing the same pairwise Wilcoxon test as above).

In terms of reliability, the plots show that the GA and DE
produce much more reliable solutions than the PSO and RS. In
the case of the RS (Fig. 11), the worse strategy is All-1, which
sometimes produces fitness values outside the range shown in
the plot. Regarding PSO (Fig. 10), the worse strategy is Rand-1.
Although PSO is better than RS, the results obtained with PSO
in this context are far in quality from the other metaheuristics
(GA and DE).

Increasing N from 1 to 5 slightly improves the reliability of
solutions (smaller boxes) for both simulation strategies All-N
and Rand-N. In the case of the GA (Fig. 8) and DE (Fig. 9),
the strategy All-1 sometimes generates reliable solutions (small
boxes) with few outliers, but other runs generate both poor
(high fitness) and unreliable solutions (large variance). The
number of reliable solutions increases for All-5 with only a
few slightly larger boxplots, however, there are still a few poor
quality (high fitness) solutions. The Rand-N variants produce
much more diverse solutions: sometimes very good and reli-
able, other times very poor and unreliable.

5.2. Comparison with irace Using Default Settings

We perform 30 runs of irace with default settings, that is,
the minimum number of traffic scenarios simulated per solution
(T first) is five and the population size is dynamically adjusted.
We also run SUMO’s greedy algorithm (SCPG), which is de-
terministic and, thus, returns a single solution.

Figure 12 compares the fitness, on the testing set, of the so-
lutions obtained by irace and SCPG with those obtained by the
GA and DE when using their best simulation strategies. The re-
sults of SCPG are not only very poor (several values are outside
the worst range shown in the plots), but also very sensitive to
the traffic scenario. Additionally, in Figure 12 we can also ap-
preciate that both GA and DE compute reliable solutions (small
boxes), however, the median fitness of the solutions computed
by the GA is slightly better than the DE (pairwise Wilcoxon
rank-sum test at 0.05 significance level).

The results obtained by irace show a remarkable improve-
ment over SCPG, yet they are significantly worse than those
obtained by the GA and DE, in terms of both fitness value and

variance. One possible explanation is that irace is sometimes
using many more than five simulations for evaluating each so-
lution, in fact, sometimes using all 30 training traffic scenarios,
which leads to fewer solutions being explored. This lack of
exploration would explain the poor results if the heterogeneity
between traffic scenarios is sufficiently low to not require simu-
lating the same solution on a large number of traffic scenarios,
as suggested by the previous correlation analysis. We study this
explanation in the following section.

5.3. Effect of Decreasing the Number of Simulations and of a
Fixed Population Size in irace

We examine how much reliability is lost and how much solu-
tion quality may be improved if we decrease the minimum num-
ber of traffic scenarios simulated per candidate solution from
five to two (T first = 2). Decreasing below two is not possible at
the moment, since this is the minimum required by the elimina-
tion test used by irace.

Given the poor statistical power of testing with just two sam-
ples, one may expect that a setting of T first = 2 would produce
even worse results. On the other hand, statistical tests on irace
are merely used as a heuristic for choosing between candidate
solutions. If the variance between traffic scenarios is lower, a
lower-power test simply ends up choosing between solutions
that are not statistically different, which makes the search more
greedy. As shown by the results in Fig. 13, this appears to be the
case here and the setting of T first = 2 improves the performance
of irace with respect to the results obtained with T first = 5. In
particular, the results become even more reliable than before.
However, in terms of solution quality, the results obtained by
irace remain significantly worse than the ones obtained by GA-
all-5.

This difference in solution fitness between irace with dy-
namic population size and the GA is due to the slow conver-
gence of irace, as shown by the plot of fitness over number of
evaluations in Fig. 14. Each line in the plot is the fitness value
of the best-so-far solution, as estimated by each algorithm at
each moment of its execution, averaged over all independent
repetitions for each algorithm. The gray shaded area around
each line corresponds to the 95% confidence interval around
the mean based on Student’s t-distribution. The plot shows
that irace with dynamic population (irace T first = 5 and irace
T first = 2) continues improving its best solution until the max-
imum number of evaluations is reached, however, its conver-
gence is much slower than the GA and it stops at much worse
solutions. When the population size of irace is fixed to 10, the
convergence speeds up substantially (irace T first = 5, |Θt | = 10
in Fig. 14). Note that this convergence plot shows the perspec-
tive of the optimization algorithms, that is, mean fitness over
training scenarios. Results are slightly different when evaluat-
ing the solution returned at the end by the algorithms on the
testing scenarios. Also, we only change here one parameter
of irace at a time. As the next section shows, irace with both
T first = 2 and |Θt | = 10 further improves the final results.

The conclusion from the above analysis is that irace with
dynamic population is not converging fast enough and a more
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Figure 8: Fitness of TLSP solutions generated by the GA using various simulation strategies. Each boxplot shows the distribution of fitness values of one solution
on the 30 traffic scenarios in the testing set. For each GA variant, there are 30 solutions obtained by independent replications.
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Figure 9: Fitness of TLSP solutions generated by the DE using various simulation strategies. Each boxplot shows the distribution of fitness values of one solution
on the 30 traffic scenarios in the testing set. For each DE variant, there are 30 solutions obtained by independent replications.
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Figure 10: Fitness of TLSP solutions generated by the PSO using various simulation strategies. Each boxplot shows the distribution of fitness values of one
solution on the 30 traffic scenarios in the testing set. For each PSO variant, there are 30 solutions obtained by independent replications.
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Figure 11: Fitness of TLSP solutions generated by the RS using various simulation strategies. Each boxplot shows the distribution of fitness values of one solution
on the 30 traffic scenarios in the testing set. For each RS variant, there are 30 solutions obtained by independent replications.
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Figure 12: Fitness of TLSP solutions obtained by irace with default settings, the DE and GA using their best simulation strategies, and SUMO’s SCPG algorithm.
Each boxplot shows the distribution of fitness values of one solution on the 30 traffic scenarios in the testing set. For irace, DE and GA, there are 30 solutions
obtained by independent replications. SCPG produces a single solution. The range of the y-axis has been extended to include all SCPG values.
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Figure 13: Fitness of TLSP solutions generated by the best GA strategy (All-5), and irace using default settings (T first = 5, dynamic population size), using a
smaller value of T first (T first = 2) and using a fixed population size (T first = 5, |Θt | = 10). Each boxplot shows the distribution of fitness values of one solution on
the 30 traffic scenarios in the testing set. For each algorithm variant, there are 30 solutions obtained by independent replications.

aggressive search behavior could be beneficial. In fact, pre-
vious studies [5] have shown that the TLSP requires a rather
aggressive search behavior. This different convergence rate is
caused by the population of just 10 solutions, whereas the de-
fault dynamic population size mechanism in irace uses much
larger sizes leading to slow convergence.

When we run irace with the same fixed population size of
10 as the GA and DE, there is a massive improvement in both
solution quality and reliability, as shown in Fig. 13 (irace with
T first = 5, |Θt | = 10). This latest variant of irace not only pro-
duces fitness values as good as those obtained by GA-All-5, but
also it improves solution reliability over different traffic condi-
tions (as shown by the smaller size of the boxes) and over dif-
ferent algorithm runs (irace does not produce the poor solutions
sometimes generated by GA-All-5).

5.4. Comparison of Best Algorithm Variants
Finally, we compare the best variants of the GA, DE, and

irace, according to the previous analysis. In particular, the GA
(GA-All-5) and the DE (DE-All-5) simulate five traffic training
scenarios per solution; and irace uses same fixed population
size of 10 as the GA and DE, and a minimum number of simu-
lations per solution of 2.

Results are shown in Figure 15, including SCPG for compar-
ison. As it can be observed, the results of irace are clearly
better than those of the SCPG in terms of fitness value and
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Figure 14: Mean fitness of the best solution found so far within each run,
as estimated by each algorithm at each moment of its execution on traffic
scenarios from the training set. The algorithms shown are the best GA strat-
egy (All-5), and irace using default settings (T first = 5, dynamic population
size), using a smaller value of T first (T first = 2) and using a fixed population
size (T first = 5, |Θt | = 10). The gray shaded area around each line corre-
sponds to the 95% confidence interval around the mean based on Student’s
t-distribution.

low variance. irace also obtains a lower mean fitness than the
GA and DE (statistically significant according to the Wilcoxon
rank-sum test with p-value < 0.01). The fitness variance is also
much lower for irace than for the GA and DE, as shown by the
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Figure 15: Fitness of TLSP solutions generated by the best GA strategy (All-5), the best RS strategy (Rand-1), irace using a fixed population size (T first = 2,
|Θt | = 10) and SCPG. Each boxplot shows the distribution of fitness values of one solution on the 30 traffic scenarios in the testing set. There are 30 solutions
obtained by independent replications for each algorithm, except for SCPG that produces a single solution.

consistently narrower boxplots, with only a few outliers above
0.2. Moreover, different replications of irace obtain roughly the
same results, which is another measure of reliability. Thus, we
can conclude that irace produces the best solutions for our case
study in terms of quality and reliability among all the variants
analyzed.

5.5. Detailed Analysis of Median Traffic-Light Programs
In the above analysis, we have focused on the fitness values

obtained by the solutions generated by the various algorithms.
However, the fitness value is only an approximation of the va-
rious traffic and environmental measures that are the actual mo-
tivation behind the optimization of traffic-light programs in our
case study. Thus, we want to shed light over the practical bene-
fits of the “typical” solutions obtained by the various algorithms
in terms of specific measures such as travel time, waiting time,
fuel consumption and vehicle emissions.

During optimization, the traffic is simulated up to a prede-
fined time horizon (1 hour plus 10 minutes of warm-up, in our
case), in order to avoid large differences in simulation times,
and a penalty is added to the fitness value (Eq. 3) if there are ve-
hicles with incomplete journeys at the end of the simulation. By
contrast, in this section, we run the simulation until all vehicles
reach their destination, in order to precisely calculate measures
such as fuel consumption, travel time, etc. Thus, the fitness
value of these simulations is not penalized.

In order to analyze and compare “typical” traffic-light pro-
grams (solutions), we compute the mean fitness over the tra-
ffic scenarios in the testing set of the 30 solutions generated
by each algorithm and we select the solution that obtains the
median value. Since there is an even number of values (30),
the true median value does not correspond to any solution, thus
we selected the solution with the smallest value larger than the
median one, i.e., the one in the 16th position when ordered by
increasing mean fitness. The selected solutions are then simu-
lated again on the 30 test traffic scenarios, each simulation runs
until all vehicles reach their destination, and we compute a set
of 32 traffic and environmental measures.

Table 1 shows the mean value and standard deviation over
30 traffic scenarios of six traffic measures provided by SUMO.
Each measure value is either the mean, maximum or minimum

over all vehicles of: TravelTime, the time in seconds required
by a vehicle to reach their destination; WaitingTime; the time
spent waiting at traffic lights; and Fuel and CO2, the amount of
fuel consumed and CO2 emitted by the vehicle in their journey,
respectively. The full table with the 32 measures is available
as supplementary material at https://goo.gl/PHCPlV. We also
show the mean non-penalized fitness obtained by each solution.
The results show a huge difference in all measures between the
TLPs produced by the GA, DE and irace and those produced by
the PSO, RS and SCPG. A pairwise Wilcoxon test with Holm’s
p-value correction (at 0.05 significance level) indicates that dif-
ferences are significant between all algorithms in all measures,
except in two cases. The first exception is between the GA,
DE and irace, and the second one between PSO and RS, where
the differences are not significant at all. Consequently, we can
distinguish here three groups of algorithms, the best algorithms
group composed by GA, DE and irace, the second group in
quality composed by PSO and RS, and finally SCPG which
is significantly worse than the rest of algorithms. In general,
we can observe that better traffic light programs result in less
wasted time, fuel consumption and CO2 emissions. Therefore,
the practical benefits of using better algorithms are positive for
citizens, institutions, and in the long term, for our world.

Although for the median solution there is no statistical sig-
nificant differences between irace, GA and DE, the boxplots in
Fig. 15 show that the GA and DE often generate much worse
solutions than irace, while irace solutions are much more con-
sistent. Moreover, irace consistently obtains the best mean val-
ues and lowest standard deviation in almost all measures (see
Table 1 and the full table available online). In the case of Mean-
Fuel and MeanCO2 for the GA algorithm, these measures are
not directly optimized by our fitness function, yet they are pos-
itively correlated with lower fitness.

The detailed analysis confirms our expectation that optimiz-
ing the fitness taking into account its variance over multiple tra-
ffic scenarios also increases the reliability of the solutions for
various traffic and environmental measures. In practice, such
solutions are more reliable when dealing with the real-world
traffic day after day.
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Table 1: Traffic measures per vehicle. Mean values (and standard deviation) over 30 test traffic scenarios of the median solutions of the best strategy for irace, GA,
DE, PSO, RS and SCPG. The best value for each measure is highlighted.

irace GA DE PSO RS SCPG
T first = 2,|Θt | = 10 All-5 All-5 All-5 Rand-1

MeanTravelTime (s) 331.97 (17.42) 334.72 (26.62) 339.48 (20.99) 532.78 (32.73) 545.90 (46.57) 1155.52 (287.05)
MaxTravelTime (s) 772.27 (217.13) 788.70 (238.53) 774.43 (215.12) 1817.87 (252.41) 2790.60 (850.20) 12265.70 (3822.28)
MeanWaitingTime (s) 89.37 (10.31) 90.30 (19.02) 96.09 (14.66) 249.48 (25.22) 253.09 (38.86) 1038.42 (36.74)
MaxWaitingTime (s) 355.67 (149.63) 411.13 (228.37) 393.30 (164.76) 1272.83 (187.65) 2197.93 (827.14) 11174.37 (3593.98)
MeanFuel (ml) 131.87 (3.01) 131.78 (3.94) 132.83 (3.38) 158.83 (4.78) 160.72 (6.97) 246.29 (46.26)
MeanCO2 (mg) 330766 (7568.47) 330545 (9877.95) 333166 (8475.33) 398394.35 (11980.32) 403137 (17477.37) 617752.64 (116019.74)
Fitness (non-penalized) 0.0876 (0.0054) 0.0882 (0.0073) 0.0905 (0.0055) 0.1627 (0.0113) 0.1660 (0.0161) 0.4158 (0.1158)

6. Conclusions

The research presented in this work deals with a real-world
case study of the TLSP and our data comes from specifications
provided by the City Council of Málaga and data collected di-
rectly from sensors at the street level, which was used to create
a number of vehicle traffic scenarios representing typical tra-
ffic flows. Due to the inherent variance in traffic flows, it is
expected that the fitness of any candidate solution to the prob-
lem will vary across traffic scenarios and when deployed in the
real-world traffic system. Thus, good solutions should not only
produce a near-optimal fitness, but also a small fitness variance,
indicating reliability. Previous works have assumed that, un-
der normal traffic conditions, the fitness variance is inherently
small, specially if the fitness values across multiple simulations
are correlated. As a result, previous optimization algorithms
for the TLSP use just one simulation per solution to assess their
fitness.

Our results show that, even when generating traffic scenarios
consistent from the same sensor data, and even if the fitness of
random solutions on those traffic scenarios is highly correlated,
the reliability of the solutions generated may be improved by
using more than one traffic scenario per optimization run. In
particular, increasing the number of simulations per solution
from one to five in metaheuristics applied to the TLSP leads to
more reliable solutions and better mean fitness. However, the
GA and DE, the best metaheuristics in our comparison, some-
times also produced poor and unreliable solutions. We also an-
alyzed a strategy that changes the traffic scenario simulated at
each iteration, thus making use of a larger number of traffic sce-
narios per run. Yet, this strategy did not lead to any improve-
ment over the previous one.

The best results were obtained by the iterated racing strategy
as implemented by irace, in which the number of simulations
performed per solution is decided dynamically within each op-
timization run. Our analysis identified that the default settings
of irace, which was originally proposed for the automatic con-
figuration of algorithmic parameters, are not appropriate for the
TLSP. In particular, the dynamic population size mechanism
of irace overestimates the best population size for the TLSP,
which is rather small. After using the same fixed population
size in irace and the metaheuristics, the former was able to out-
perform all the metaheuristics both in terms of solution quality
and reliability.

By analyzing in detail the median solutions produced by the
algorithms using longer simulations, we show that the improve-

ments in fitness mean value and variance over multiple traffic
scenarios also translate to similar improvements on various tra-
ffic and environmental measures of practical interest.

In addition, we tested a PSO algorithm and two baseline al-
gorithms, a classical random search and the greedy algorithm
(SCPG) provided by the SUMO simulator. All of them per-
formed significantly worse than the GA, DE and irace in terms
of all the measures analyzed.

One main conclusion of this work is that future optimization
algorithms for the TLSP should consider the reliability of solu-
tions over multiple traffic scenarios and incorporate simulation
strategies that improve reliability. Given the results presented
here, the hybridization of iterated racing strategies with evolu-
tionary algorithms is one the most promising directions.

A next step would be to re-evaluate previous studies [6, 10,
11, 20, 23, 24] in terms of reliability, which will require a sig-
nificant implementation work since those algorithms were de-
signed for slightly different variants of the traffic-light optimiza-
tion problem. We also want to compare our obtained solutions
with the one currently used on the real system, however, the
latter is not available to us at the present moment.

Future work should also study the reliability of simulation-
optimization algorithms for the TLSP under unusual traffic sce-
narios (due to construction works, emergency scenarios, ex-
tremely congested periods). Techniques such as iterated rac-
ing allow optimizing reliability under such unusual scenarios
by adding them to the training set used during optimization.
We expect that the benefits reported in this paper will be even
greater when considering also those unusual scenarios.
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