
ACVIZ: A Tool for the Visual Analysis of the Configuration of
Algorithms with irace
Marcelo de Souzaa,b,∗, Marcus Rittb, Manuel López-Ibáñezc and Leslie Pérez Cáceresd

aSanta Catarina State University, Brazil
bFederal University of Rio Grande do Sul, Brazil
cUniversity of Málaga, Spain
dPontificia Universidad Católica de Valparaíso, Chile

ART ICLE INFO

Keywords:
algorithm configuration
parameter tuning
irace

ABSTRACT

This paper introduces acviz, a tool that helps to analyze the automatic configuration of algorithms
with irace. It provides a visual representation of the configuration process, allowing users to extract
useful information, e.g. how the configurations evolve over time. When test data is available, acviz
also shows the performance of each configuration on the test instances. Using this visualization, users
can analyze and compare the quality of the resulting configurations and observe the performance
differences on training and test instances.

1. Introduction
Many algorithms have input parameters that allow adapt-

ing their behavior to the problem being solved. A specific
parameter configuration often has an impact on the perfor-
mance of the algorithm. The search for good configurations
is a fundamental step of the algorithm design. There are
different tools, called configurators, for configuring algo-
rithms automatically. Examples of such configurators in-
clude ParamILS [1], SMAC [2], GGA [3], and irace [4].
They reduce the human effort required for comparing several
parameter configurations on different problem instances, min-
imize the human bias and make the configuration process
reproducible.

In this work, we focus on irace [4], a configurator writ-
ten in R and widely used in different domains. The main
application of irace is the automatic configuration [5] of op-
timization [6, 7, 8, 9] and decision [10, 11] algorithms. Be-
sides that, irace was used to configure the parameters of the
GCC compiler [12], the CPLEX optimization software pack-
age [13, 10, 11], machine learning models [14, 15, 16], and
also for improving the anytime behavior of optimization al-
gorithms [17]. Some works define a parameterized frame-
work with algorithmic design choices, then use irace to au-
tomatically design algorithms [18]. This approach was ap-
plied to design algorithms for different problems, including
permutation flowshop scheduling [19, 20, 21, 22], binary
quadratic programming [23, 24], bin packing [25], and also
to construct control software for robots [26, 27, 28]. The
irace configurator was also used to configure and design al-
gorithms to tackle multi-objective problems, including evo-

acviz is available at https://github.com/souzamarcelo/acviz.
∗Corresponding author

marcelo.desouza@udesc.br (M. de Souza);
marcus.ritt@inf.ufrgs.br (M. Ritt); manuel.lopez-ibanez@uma.es (M.
López-Ibáñez); leslie.perez@pucv.cl (L. Pérez Cáceres)

ORCID(s): 0000-0002-0786-2127 (M. de Souza); 0000-0001-7894-1634
(M. Ritt); 0000-0001-9974-1295 (M. López-Ibáñez); 0000-0001-5553-6150
(L. Pérez Cáceres)

lutionary approaches [29, 30, 31, 32], ant colony optimiza-
tion [33, 34], hybrid local searches [35] and clustering al-
gorithms [27]. Additional applications of irace include the
optimization of traffic light programs [36] and the analysis
of configurations through ablation [37].

The use of configurators like irace allows users to adjust
algorithms for obtaining high performance without the need
of vast expert knowledge about the algorithm or the prob-
lem. The configuration process implemented in irace often
generates large volumes of algorithm performance data that
is used to guide the search for good configurations. Addi-
tionally, the data produced by irace can be used to obtain in-
sights about the configured algorithm and the configuration
process. Despite the widespread use of irace, many users
apply it without a careful analysis of its operation, i.e. they
simply use the tool as a black-box method for configuring
algorithms. Nevertheless, understanding how the configu-
rator works and analyzing its execution is essential to ob-
tain the best results from the configuration process and to
ensure the efficient use of the computational resources. This
understanding is essential when designing the configuration
scenario, which defines the parameter space, the training in-
stances, and the available computational resources. The con-
figuration scenario can be setup inadequately, e.g. by using
too little or too much computational effort may lead to poor
results or the waste of available computational resources.
Using training instances that are not representative of typ-
ical problem instances may lead to poor results on a sepa-
rate set of test instances. Too much configuration effort and
insufficiently diverse training instances will lead to overtun-
ing [38], i.e. the algorithm performs increasingly worse on
the test instances as more effort is spent on the configura-
tion process. A detailed analysis of the configuration pro-
cess helps to identify such cases and adjust the configuration
scenario. Currently, there are no tools available to directly
visualize the configuration process data and thus, promoting
and simplifying the analysis of it.

We present acviz, a visual tool to analyze runs of irace

de Souza et al.: Preprint submitted to Elsevier Page 1 of 10

https://github.com/souzamarcelo/acviz


Please cite this pre-print manuscript as: Marcelo De Souza, Marcus Ritt, Manuel López-Ibáñez, and Leslie Pérez Cáceres. ACVIZ: A Tool for the Visual Analysis of the
Configuration of Algorithms with irace. Operations Research Perspectives, 2021. doi: 10.1016/j.orp.2021.100186

Algorithm 1: Iterated racing procedure
Input : Configuration scenario ⟨Θ,Π, c⟩ and

computational budget B.
Output: Set of best configurations Θelite.

1 Θelite ← ∅
2 repeat
3 Θ′

← sample(Θ,Θelite)
4 Θelite ← race(Θ′ ∪ Θelite,Π, c)
5 until budget B is exhausted
6 return Θelite

based on the graphical representation of the configuration
process. The acviz tool provides two types of visualizations.
The first shows the evolution of a single run of the con-
figuration process performed by irace. The second visual-
izes the performance of the best found configurations on test
instances and contrasts them with the performance on the
training instances used by irace. This paper describes acviz
in detail and presents examples that show how it can be used
to understand the configuration process, and how it can pro-
vide useful information to design better configuration sce-
narios.

The remainder of this paper is organized as follows. Sec-
tion 2 reviews the basic concepts about automatic algorithm
configuration and explains the irace configurator. Section 3
introduces the acviz program and its functions. Section 4
presents examples of applying acviz to analyze the automatic
configuration of algorithms. Finally, Section 5 gives some
concluding remarks.

2. Automatic algorithm configuration
Let be a target algorithmwith parameters p1, p2,… , pn

and corresponding domains Θ1,Θ2,… ,Θn. The parameter
space Θ is a subset of Θ1 × Θ2 ×⋯ × Θn, from which in-
valid parameter combinations are excluded. Parameters that
determine the selection of algorithmic components (e.g. the
neighborhood operator to be used in a local search) have usu-
ally categorical or ordinal domains. Parameters that control
the behavior of algorithmic components (e.g. the perturba-
tion size of an iterated local search) are usually numerical
and have integer or real domains. A configuration of the
algorithm � ∈ Θ is a valid assignment of values to all pa-
rameters.

Given a set Π of problem instances, the performance of
a particular run of the target algorithm with configuration
� ∈ Θ on instance � ∈ Π is given by some function c(�, �).
For optimization scenarios, c is usually the cost of the best
solution found after running the algorithm for a predefined
time limit. For decision algorithms, c is usually the running
time. If  is stochastic, then c(�, �) is a random variable.
The algorithm configuration task consists in finding at least
one good configuration � ∈ Θ that optimizes the expected
performance of running  under � on instances Π.

The irace configurator [4] uses iterated racing [39, 40]

for the automatic configuration of algorithms. The basic
steps of irace are shown in Algorithm 1. Given the con-
figuration scenario ⟨Θ,Π, c⟩ and a computational budget B,
irace iteratively samples a population of configurations Θ′ ,
and evaluates them using a racing procedure. The best found
configurations form the elite setΘelite, which is used to guide
the sampling of new configurations. The sampling process
followed by the racing procedure are repeated while the bud-
get B is not exhausted. The budget B can be defined as a
maximum number of configuration evaluations or an execu-
tion time limit. The number of iterations is determined by
irace at the beginning of the configuration process, based on
the number of parameters to be configured. The budget of an
iteration is determined at the start of the iteration, based on
the remaining budget available and the number of iterations
to be executed next.

The sampling phase (line 3 of Algorithm 1) behaves as
follows. At the beginning of the execution, irace samples the
parameter spaceΘ uniformly, sinceΘelite is empty. In subse-
quent iterations, irace ranks the elite configurations accord-
ing to their performance in previous evaluations, and itera-
tively selects one of them to generate each new configuration
�. Elite configurations of a higher rank have a higher prob-
ability of being selected. The value of each parameter of �
is determined based on probability distributions associated
with its parent. Newly generated configurations inherit this
set of probability distributions (one for each parameter) from
their parents. The parameters of these distributions are up-
dated at the beginning of each iteration to focus the sampling
process around the best parameters values.

The racing phase (line 4 of Algorithm 1) evaluates the
quality of the new and elite configurations (Θ′ and Θelite, re-
spectively) on a subset of the instances Π according to the
performance metric c. After evaluating each configuration
on a predefined number of initial instances, the configura-
tions that perform statistically worse than the best one are
discarded. The remaining configurations are evaluated on a
new instance before performing a new statistical test. This
process is repeated until the budget of the iteration is ex-
hausted, or a minimum number of surviving configurations
is reached. The surviving configurations become the elite
set for the next iteration.

The updates of the probability distributions may lead to a
premature convergence of the configuration process. In this
case, the newly generated configurations are very similar to
those already evaluated and the configuration process loses
diversity. To avoid this, irace implements a convergence de-
tection mechanism that compares each new configuration to
the elite configuration used to generate it. The comparison
is carried out by calculating their distance, based on the dif-
ferences of the parameter values presented by both config-
urations. If this distance is less than a threshold, irace per-
forms a soft restart that updates the parameters of the sam-
pling distributions associated to that elite configuration, in
order to increase the probability of generating different con-
figurations.

2

http://dx.doi.org/10.1016/j.orp.2021.100186


Please cite this pre-print manuscript as: Marcelo De Souza, Marcus Ritt, Manuel López-Ibáñez, and Leslie Pérez Cáceres. ACVIZ: A Tool for the Visual Analysis of the
Configuration of Algorithms with irace. Operations Research Perspectives, 2021. doi: 10.1016/j.orp.2021.100186

Table 1
Arguments of acviz (default options are shown in bold).

Argument Options Description

--iracelog <log file> The irace log file (.Rdata)

--typeresult {aval, adev, rdev} Which values are presented

--bkv <bkv file> The file containing reference values

--imputation {elite, alive} Imputation strategy for missing values

--scale {log , lin} Scaling of the y-axis
--noelites – Disables different markers for evaluations of elite configurations

--noinstances – Disables coloring evaluations on different instances

--pconfig [0, 1] Identifies the configurations of the best evaluations

--overtime – Presents the configuration time on the x-axis
--alpha [0, 1] The opacity of the points

--timelimit [0, ∞] Time limit used to evaluate decision algorithms

--testing – Presents the plot of the test phase

--testcolors {instance, overall} The scheme for the color map

--exportdata – Exports the data of the configuration process to a csv file

--exportplot – Exports the produced plot to pdf and png files

--output <prefix> The prefix name of the exported files

--monitor – Monitors the irace log file and updates the plot after each iteration

3. The acviz program
Given a log file produced by running irace, the acviz

program provides visualizations of the configuration pro-
cess. Figure 1 gives examples of the configuration of two
different algorithms. A point (i, v) shows the performance
v obtained in the ith evaluation in the configuration pro-
cess. Note that each evaluation is associated to a unique
configuration-instance pair (�, �). The first example shows
the configuration of an optimization algorithm. In this case,
the performance value v is the relative deviation of the best
solution found in each evaluation from an instance-based ref-
erence performance value. These reference values can be
provided by the user when, for example, there are best known
solutions for the instances or there is a current default config-
uration and its performance can be used as reference. When
no reference value is provided, the best values found by irace
are used. The plot also shows the beginning of each iteration
by a vertical dashed line, with the number of evaluations
(bottom) and the number of different instances (top) used
until that iteration. This vertical line is presented in red for
iterations in which a soft restart was applied. Finally, evalua-
tions on different instances are indicated by different colors,
and evaluations of elite configurations are represented using
different markers (⦁ for elite configurations of the current
iteration, ♦ for configurations that were elite in the final it-
eration, and ★ for the best found configuration, i.e. the first
ranked elite configuration of the final iteration).

The horizontal lines present the estimated performance
of the elite (purple line) and non-elite (orange line) config-
urations in each iteration. The estimated performance is de-

termined by the median of the results obtained by all con-
figurations of the current iteration on all instances evaluated
so far, considering evaluations in the current and previous
iterations. Some of the non-elite configurations may not be
evaluated on a subset of the instances, e.g. when the configu-
ration is discarded in the middle of an iteration. For the cal-
culation of the estimated performance, we replace missing
values by the worst result of the elite configurations, since
the eliminated configuration is not better than the worst elite
configuration (called elite imputation strategy). An alterna-
tive approach is to use the worst result of the configurations
being evaluated in the current iteration (called alive imputa-
tion strategy).

Table 1 details the input arguments of acviz. The com-
mand to produce the first visualization shown in Figure 1 is:

python3 acviz.py --iracelog irace.Rdata --bkv bkv.txt

which provides the irace log file to be used, in this case
irace.Rdata, and the file containing the reference values used
to compute the relative deviations (bkv.txt). Additional op-
tions control the elements of the visualization, like present-
ing the absolute performance values or the absolute devi-
ations from the reference values (option --typeresult), or
changing the imputation strategy. Users can also disable the
coloring of instances and the markers of elite configurations,
or tell acviz to show the ID of the configurations associated
with the p% best performing evaluations of each iteration
(option --pconfig). The opacity of the points can be changed
and the default logarithmic scale of the y-axis can be dis-
abled.

3

http://dx.doi.org/10.1016/j.orp.2021.100186


Please cite this pre-print manuscript as: Marcelo De Souza, Marcus Ritt, Manuel López-Ibáñez, and Leslie Pérez Cáceres. ACVIZ: A Tool for the Visual Analysis of the
Configuration of Algorithms with irace. Operations Research Perspectives, 2021. doi: 10.1016/j.orp.2021.100186

The second visualization in Figure 1 shows the config-
uration of a decision algorithm, where the performance of
each evaluation is the running time used to solve the corre-
sponding instance. In this case, the configuration budget is a
time limit, then users can opt to plot the starting time of eval-
uations on the x-axis (option --overtime), making it possible
to observe how the configuration time is distributed over the
iterations, and identify evaluations that took a long time. To
produce this visualization, we select to show absolute per-
formance values in the y-axis and disable the logarithmic
scale.

During the configuration process, evaluations that reach
the running time limit without solving the instance are penal-
ized by returning to irace the time limitmultiplied by a penal-
ization factor [10]. If we inform the time limit to acviz, each
evaluation with a result that exceeds this limit is presented in
the upper border of the plot, indicating that these evaluations
did not solve the instance (see those cases in the second visu-
alization shown in Figure 1). The following command pro-
duces this visualization (observe that argument --iracelog
can be omitted):

python3 acviz.py irace.Rdata --typeresult aval

--scale lin --timelimit 10 --overtime

A second plot provided by acviz presents the results ob-
tained by the best found configurations on the set of test in-
stances (this requires the testing feature to be enabled when
running irace). Figure 3 shows an example, presenting the
results of the best elite configurations of each iteration and
all elite configurations of the last iteration. Each column in
the plot is associated with a configuration. The acviz tool
presents its ID and, in parenthesis, the iterations in which it
was the first ranked elite configuration (e.g. 251 (3, 4)means
configuration 251 was the best ranked elite configuration in
iterations 3 and 4). For the final iteration, we also present the
rank of the corresponding configuration in the elite set in a
subscript (e.g. 91 means that the configuration was ranked
first in the 9th iteration). The instance name is black if the
instance has been used during training and testing, and blue,
if it has been used only for testing. The subplot on the left
shows the mean relative deviations from the reference val-
ues that, as for the previous plot, can be provided using the
--bkv option, or are determined by acviz based on the best
values found during the execution of irace (in both training
and test phases). The subplot on the right presents the rank-
ing of each configuration on each instance, allowing us to
compare the performance of different configurations across
instances. The command to produce the visualization shown
in Figure 3 indicates that acviz should present the plot of the
test phase:

python3 acviz.py irace.Rdata --bkv bkv.txt --testing

In the visualization of the test phase, we can also use op-
tion --typeresult to present the mean absolute values or the
mean absolute deviations from the reference values. The col-
ors in the plot help to differentiate the performance obtained
by the resulting configurations. In Figure 3, the color map

is calculated according to the results obtained within each
instance. Worst values for each instance are in red while the
best values are in green. Alternatively, the color map can
be defined according to the whole range of values in all in-
stances, thus visualizing the overall performance obtained in
the test phase.

When using the interactive presentation mode, acviz al-
lows the user to control the visualization by moving the plot,
zooming and controlling the margins of the figure. When
positioning the cursor over a point, acviz shows a tooltip
box with the corresponding evaluation number, the associ-
ated instance name and configuration ID. It is also possible
to export the data and both of the plots. Finally, when option
--monitor is enabled, acviz monitors the irace log file during
the configuration process and updates the visualization af-
ter each iteration, allowing the user to analyze the evolution
of the configuration process during its execution. All acviz
options discussed above are summarized in Table 1.

4. Analyzing the configuration process with
acviz
In this section we present three exemplary case stud-

ies of configurations with flaws that can be easily identified
when using acviz. We use two scenarios from the Algorithm
Configuration Library [41]. The first scenario considers the
configuration of ACOTSP [42], a framework of ant colony
optimization algorithms, applied to the symmetric traveling
salesperson problem (TSP) [43]. ACOTSP has 11 param-
eters, 5 of which are conditional. We run ACOTSP with a
time limit of 20 seconds of CPU time. In the first and second
case studies, we use the Euclidean TSP instances with 2000
cities from a previous study [44]. For the third case study,
we additionally use ten TSP instances with uniformly ran-
dom distance matrices, generated with portmgen from the
8th DIMACS Implementation Challenge [45]. In this sce-
nario, irace optimizes the cost of the best found solution.

The second scenario considers the configuration of
SPEAR [46], an exact solver for boolean satisfiability (SAT)
problems. SPEAR has 26 parameters, 9 of which are condi-
tional. We use the SAT-encoded instances of graph coloring
from Gent et al. [47], and a limit of 10 seconds of wall-clock
time. Here, irace minimizes SPEAR’s solving time, where
for evaluations in which the instance is not solved, a penal-
ized performance value is returned.

In all experiments, we use the default settings of irace.
The detailed results of all experiments are available from De
Souza et al. [48]. The source code of acviz, usage instruc-
tions, and further application examples are available on the
project website (https://github.com/souzamarcelo/acviz).

4.1. Case study 1: Easy and hard instances
In this section we discuss two example scenarios and

show how easy and hard instances can be identified. We
configure ACOTSP with a budget of 2K evaluations, and
SPEAR with a budget of 20K seconds. Figure 1 shows
the visualizations produced by acviz. When configuring

4

http://dx.doi.org/10.1016/j.orp.2021.100186
https://github.com/souzamarcelo/acviz


Please cite this pre-print manuscript as: Marcelo De Souza, Marcus Ritt, Manuel López-Ibáñez, and Leslie Pérez Cáceres. ACVIZ: A Tool for the Visual Analysis of the
Configuration of Algorithms with irace. Operations Research Perspectives, 2021. doi: 10.1016/j.orp.2021.100186

7 8 9 12 15 17 19 21
Instances evaluated

1

3
4
3

6
1
4

8
8
8

1
2
5
9

1
6
1
5

1
8
1
2

1
9
0
0

1
9
8
0

Candidate evaluations

10−3

10−2

10−1

100

R
el

at
iv

e
de

vi
at

io
n

regular config.

elite config.

final elite config.

best found config.

iteration

median iteration

median elites

Scenario 1: ACOTSP with a budget of 2K evaluations.

8 10 13 15 17 19 21 23 24
Instances evaluated

0

6
7
1
1

1
0
8
3
9

1
2
5
2
3

1
4
6
0
8

1
6
7
7
7

1
8
1
6
7

1
8
8
2
4

1
9
5
9
1

1
9
8
4
2

Cumulative running time [in seconds]

0

1

2

3

4

5

6

≥TL

A
bs

ol
ut

e
va

lu
e

regular config.

elite config.

final elite config.

best found config.

iteration

median iteration

median elites
Scenario 2: SPEAR with a budget of 20K seconds.

8 10 13 15 17 19 21 23 24
Instances evaluated

0

6
7
1
1

1
0
8
3
9

1
2
5
2
3

1
4
6
0
8

1
6
7
7
7

1
8
1
6
7

1
8
8
2
4

1
9
5
9
1

1
9
8
4
2

Cumulative running time [in seconds]

0

1

2

3

4

5

6

≥TL

A
bs

ol
ut

e
va

lu
e

regular config.

elite config.

final elite config.

best found config.

iteration

median iteration

median elites

Figure 1: Example of configuring ACOTSP and SPEAR using instances of different hardness.

ACOTSP we observe the evolution of the configuration pro-
cess, i.e. how the sampled configurations present better per-
formance over the iterations. At the beginning of the config-
uration, there is a subset of the configurations with bad per-
formance on almost all evaluated instances (points in the up-

per part of the figure in the four first iterations). The number
of such bad performers decreases over the iterations, while
the estimated performance of elite and non-elite configura-
tions (the median values given by the horizontal lines) be-
comes better. We can also see that the instance selection

5

http://dx.doi.org/10.1016/j.orp.2021.100186


Please cite this pre-print manuscript as: Marcelo De Souza, Marcus Ritt, Manuel López-Ibáñez, and Leslie Pérez Cáceres. ACVIZ: A Tool for the Visual Analysis of the
Configuration of Algorithms with irace. Operations Research Perspectives, 2021. doi: 10.1016/j.orp.2021.100186

strategy implemented in irace iteratively increases the num-
ber of instances on which the configurations are evaluated.

In the configuration of SPEAR, the estimated perfor-
mance of the configurations also improves over the itera-
tions. Besides that, we see that different configurations have
a similar performance on each instance. Note that the eval-
uations of different configurations on a particular instance,
represented by clusters of points of the same color, present a
small variation of the running time. Nevertheless, we ob-
serve that elite configurations perform better than others,
since they are often among the best in each cluster.

The visualizations shown in Figure 1 also provide some
information about the configuration scenarios. We can see
that both scenarios are quite homogeneous, i.e. a configura-
tion with good performance on one instance often presents
good performance on the others. For example, if we look
at the elite configurations (⦁ markers) of each iteration, we
see that they present the best results for almost all instances.
This contributes to irace easily identifying the best config-
urations in the racing phase, and consequently, using less
evaluations than the budget available for the iterations. The
saved budget is then used to performmore iterations than the
five initially scheduled, as observed in the plot. Those ad-
ditional iterations are increasingly shorter because they are
consuming the remaining budget and fewer new configura-
tions are sampled.

We included in both scenarios two additional instances:
one that is easy to solve, shown in gray, and another that
is hard to solve, shown in green. Figure 1 shows an inter-
esting behavior of the configurations on those instances. In
ACOTSP, we can see that almost all configurations perform
very well on the easy instance. Besides that, there is no vari-
ation of different configurations on this instance. Therefore,
the evaluations on this instance do not help to determine the
quality of different configurations and decide which one is
better. In the case of the hard instance, we observe that it
helps to differentiate the quality of the configurations in the
first iterations. However, as for the easy instance, from the
fifth iteration on, it stops being useful for the configuration
process.

In the configuration of SPEAR it is even more evident
that the easy and hard instances do not contribute to the con-
figuration process. We observe that all configurations imme-
diately solve the easy instance, while no configuration solves
the hard instance. In this case, we could exclude the easy
instance from the configuration scenario, since it does not
help to evaluate the configurations. We could also exclude
the hard instance, or increase the time limit, trying to find
configurations that can solve it. In this context, acviz helps
to identify such cases by visualizing and comparing how the
configurations perform on the training instances and which
ones are actually contributing to the configuration process.

4.2. Case study 2: Unnecessarily large budget
Choosing an adequate configuration budget can be dif-

ficult. A small budget may not be sufficient to find good
configurations. A common practice is to use the highest

possible budget, according to time constraints and the avail-
able computational resources. However, even after running
irace, it may not be clear if the chosen budget was appropri-
ate. In this second experiment, we configure both ACOTSP
and SPEARwith very large budgets of 100K evaluations and
500K seconds, respectively. Figure 2 shows the resulting vi-
sualizations. Since the budget is larger, irace samples more
configurations and uses more instances to evaluate them.

In ACOTSP, the observed behavior is similar to the first
case study. We can see a fast evolution of the configura-
tion process in the first iterations, producing configurations
with better performance compared to those obtained in the
first case study. From the fifth iteration on, after approxi-
mately 20K evaluations, the quality of the sampled config-
urations stagnates. Note that the estimated performance of
both elite and non-elite configurations (orange and purple
horizontal lines) does not improve from that point until the
end of the configuration process. We can also see that irace
performs a soft restart (red dashed line) in almost all subse-
quent iterations, which indicates that the sampling models
converged. The same behavior is observed in the configu-
ration of SPEAR, where soft restarts are present after about
400K seconds.

In both scenarios, if we needed to repeat the process,
we could decrease the budget to about 20K∼ 30K evalu-
ations (ACOTSP) or 300K∼ 400K seconds (SPEAR), for
example. Alternatively, if we have the time for a large
budget, we could tell irace to sample more configura-
tions at each iteration to increase diversification (parameter
nbConfigurations). For heterogeneous scenarios, the addi-
tional budget could be better spent in increasing the num-
ber of instances evaluated before the first and between each
elimination test (parameters firstTest and eachTest of irace,
respectively).

4.3. Case study 3: Unrepresentative instances
A common mistake when configuring algorithms is to

choose training instances that are not representative of the
instances to be used in production. Suppose, for example,
we use an algorithm that has been configured on a certain
class of instances . Now, we want to solve additional in-
stances of class ′. In order to get the best performance, we
may want to configure the algorithm again to reflect the new
instance distribution. If the goal is to obtain a configura-
tion that performs well for both instance classes, then start-
ing the configuration process from the current configuration
(tuned for ) and training only on instances of ′ would be
a methodological mistake.

In this experiment, we reproduce the above situation us-
ing ACOTSP to analyze how the configuration process be-
haves. In a first step, we select ten TSP instances with ran-
dom distances and tune ACOTSP on them to obtain a set of
initial configurations. Then, we select ten Euclidean TSP in-
stances, and use them as training instances for an irace run
with a budget of 3K evaluations. We provide the configura-
tions from the first step as initial configurations. We use the
testing options of irace to evaluate the resulting configura-

6

http://dx.doi.org/10.1016/j.orp.2021.100186


Please cite this pre-print manuscript as: Marcelo De Souza, Marcus Ritt, Manuel López-Ibáñez, and Leslie Pérez Cáceres. ACVIZ: A Tool for the Visual Analysis of the
Configuration of Algorithms with irace. Operations Research Perspectives, 2021. doi: 10.1016/j.orp.2021.100186

8 10 12 14 16 18 20 22 24 26 28 30 32 34 38 40 48 66
Instances evaluated

1

52
08

10
47

7

16
01

4

21
86

7

29
28

8

35
15

1

43
21

1

50
27

3

56
43

3

62
47

0

69
80

9

76
36

9

83
06

6

87
71

7

92
11

6
92

11
6

94
60

2
99

81
6

Candidate evaluations

10−2

10−1

100

R
el

at
iv

e
de

vi
at

io
n

regular config.

elite config.

final elite config.

best found config.

iteration

iteration (restart)

median iteration

median elites

Scenario 1: ACOTSP with a budget of 100K evaluations.

8 10 12 14 16 18 20 22 23 24 25 26 27 28 29 30 31 33 36 56
Instances evaluated

0

18
34

2

43
59

9

65
59

1

95
68

3

12
61

24

16
42

83

19
76

64

23
25

31

26
69

64

30
13

57

33
57

40

36
02

25

38
91

71

40
74

29

42
45

96

44
06

40

45
73

69
47

01
97

48
55

34

49
97

63

Cumulative running time [in seconds]

1

2

3

4

5

6

≥TL

A
bs

ol
ut

e
va

lu
e

regular config.

elite config.

final elite config.

best found config.

iteration

iteration (restart)

median iteration

median elites

Scenario 2: SPEAR with a budget of 500K seconds.

8 10 12 14 16 18 20 22 23 24 25 26 27 28 29 30 31 33 36 56
Instances evaluated

0

18
34

2

43
59

9

65
59

1

95
68

3

12
61

24

16
42

83

19
76

64

23
25

31

26
69

64

30
13

57

33
57

40

36
02

25

38
91

71

40
74

29

42
45

96

44
06

40

45
73

69
47

01
97

48
55

34

49
97

63

Cumulative running time [in seconds]

1

2

3

4

5

6

≥TL

A
bs

ol
ut

e
va

lu
e

regular config.

elite config.

final elite config.

best found config.

iteration

iteration (restart)

median iteration

median elites

Figure 2: Example of configuring ACOTSP and SPEAR with large budgets.

tions on all Euclidean instances (used as training set) and all
random distance instances (not used as training set, thus we
call it test set). Random distance and Euclidean instances de-
fine structurally different TSP instances and thus, ACOTSP

configurations that exhibit high performance in one instance
class are not expected to maintain such high performance in
the other class. The testing results are shown in Figure 3.
Since we evaluate the resulting configurations on both train-

7

http://dx.doi.org/10.1016/j.orp.2021.100186


Please cite this pre-print manuscript as: Marcelo De Souza, Marcus Ritt, Manuel López-Ibáñez, and Leslie Pérez Cáceres. ACVIZ: A Tool for the Visual Analysis of the
Configuration of Algorithms with irace. Operations Research Perspectives, 2021. doi: 10.1016/j.orp.2021.100186

5
(1

)

16
2

(2
)

25
1

(3
,4

)

29
2

(5
)

47
1

(6
,7
,8
,9

1
)

49
7

(9
2

)

49
0

(9
3

)

49
8

(9
4

)

43
0

(9
5

)

r2000-1

r2000-2

r2000-3

r2000-4

r2000-5

r2000-6

r2000-7

r2000-8

r2000-9

r2000-10

2000-1

2000-2

2000-3

2000-4

2000-5

2000-6

2000-7

2000-8

2000-9

2000-10

0.107 0.377 0.358 0.443 0.459 0.450 0.445 0.449 0.444

0.099 0.386 0.361 0.457 0.460 0.460 0.452 0.450 0.460

0.094 0.375 0.355 0.439 0.444 0.453 0.434 0.450 0.439

0.092 0.366 0.351 0.445 0.455 0.440 0.438 0.438 0.439

0.099 0.373 0.359 0.441 0.444 0.442 0.436 0.448 0.454

0.102 0.374 0.348 0.433 0.444 0.446 0.432 0.436 0.441

0.093 0.381 0.367 0.442 0.465 0.460 0.438 0.441 0.446

0.099 0.368 0.349 0.432 0.429 0.448 0.415 0.434 0.433

0.094 0.373 0.347 0.419 0.434 0.442 0.437 0.426 0.442

0.097 0.380 0.365 0.462 0.458 0.463 0.445 0.457 0.444

0.008 0.004 0.003 0.004 0.003 0.003 0.003 0.003 0.003

0.008 0.005 0.003 0.004 0.003 0.003 0.004 0.004 0.003

0.008 0.005 0.005 0.004 0.003 0.003 0.003 0.003 0.005

0.009 0.007 0.004 0.004 0.004 0.003 0.004 0.004 0.004

0.008 0.005 0.004 0.004 0.004 0.004 0.005 0.004 0.004

0.008 0.006 0.004 0.005 0.003 0.004 0.004 0.004 0.003

0.011 0.005 0.004 0.004 0.003 0.003 0.003 0.005 0.003

0.007 0.005 0.003 0.004 0.003 0.003 0.004 0.004 0.003

0.011 0.005 0.005 0.004 0.003 0.004 0.003 0.004 0.003

0.008 0.004 0.003 0.004 0.003 0.004 0.004 0.003 0.004

Mean relative deviations

5
(1

)

16
2

(2
)

25
1

(3
,4

)

29
2

(5
)

47
1

(6
,7
,8
,9

1
)

49
7

(9
2

)

49
0

(9
3

)

49
8

(9
4

)

43
0

(9
5

)

1 3 2 4 9 8 6 7 5

1 3 2 6 7 9 5 4 8

1 3 2 5 7 9 4 8 6

1 3 2 8 9 7 5 4 6

1 3 2 5 7 6 4 8 9

1 3 2 5 8 9 4 6 7

1 3 2 6 9 8 4 5 7

1 3 2 6 5 9 4 8 7

1 3 2 4 6 9 7 5 8

1 3 2 8 7 9 5 6 4

9 7 2 8 1 4 3 5 6

9 8 4 6 2 3 5 7 1

9 8 6 5 1 3 2 4 7

9 8 3 5 4 1 2 6 7

9 7 4 2 6 3 8 1 5

9 8 5 7 1 6 4 3 2

9 7 6 5 3 2 4 8 1

9 8 2 5 1 3 7 6 4

9 8 7 6 1 5 2 4 3

9 7 2 5 1 4 8 3 6

Ranks by instance

Figure 3: Test results after configuring ACOTSP with unrepresentative training instances. Instances with random distances
(starting with ‘r’ and in blue) were used only for test, while Euclidean instances (in black) were used for both training and test.

ing and test instances, we have useful information about how
they perform on both instance sets. The mean deviations
give an overview of the results, allowing us to observe the
evolution in the quality of configurations found during the
configuration process. We can also observe how those con-
figurations compare with each other by analyzing the ob-
tained ranks.

When the training instances are not representative, the
found configurations may specialize on the known training
instances and present poor performance on unseen test in-
stances. Such an overtuning can be observed in Figure 3. As
the configuration progresses, the performance of the config-
urations is becoming better on the training instances. On the
other hand, the performance on the test instances degrades
over the iterations. Since we initialized irace with configu-
rations known to perform well on the test instances, the best
configuration in the first iteration still performs well on the
test set, but the performance quickly degrades on subsequent

iterations. To solve this problem, we need to include some
random distance instances in the training set, and make sure
that the relative frequency of each type of instance seen dur-
ing training matches their relative frequency in the test set,
or the frequency expected in unseen instances when the al-
gorithm is deployed in production.

Reproducibility. All materials necessary for reproducing
the experiments are available from De Souza et al. [48]. Ex-
periments were run on a GNU/Linux platform running on an
8-core AMD FX-8150 CPU 3.6GHz and 32GB memory.
We used acviz 1.1, irace 3.1, ACOTSP 1.03, and SPEAR
1.2.1. The acviz program was written in Python 3 and re-
quires R (≥ 3.4) and the following libraries: numpy (≥ 1.18),
pandas (≥ 1.0.3), matplotlib (≥ 3.1), and rpy2 (≥ 3.2). Re-
sults of ACOTSP, SPEAR, and as a consequence of irace,
are sensitive to CPU speed.

8

http://dx.doi.org/10.1016/j.orp.2021.100186


Please cite this pre-print manuscript as: Marcelo De Souza, Marcus Ritt, Manuel López-Ibáñez, and Leslie Pérez Cáceres. ACVIZ: A Tool for the Visual Analysis of the
Configuration of Algorithms with irace. Operations Research Perspectives, 2021. doi: 10.1016/j.orp.2021.100186

5. Concluding remarks
We described in this paper a graphical tool to support

the automatic configuration of algorithms with irace. We
presented a visualization scheme for the configuration pro-
cess, which provides useful information to help the design
of configuration scenarios. We also presented a second vi-
sualization to analyze the performance of the resulting con-
figurations on test instances. We discussed some exam-
ples, showing how these visualizations can help to iden-
tify common problems when configuring algorithms. Both
plots are implemented in the acviz program. Additional fea-
tures to control the visualization elements and export the re-
sults are also provided. The source code of acviz, instruc-
tions of use, and further application examples are available
at https://github.com/souzamarcelo/acviz.

Acknowledgments. This research has been supported by Coorde-
nação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil
(CAPES) – Finance Code 001. M. de Souza acknowledges the
support of the Santa Catarina State University. M. Ritt acknowl-
edges the support of CNPq (grant 437859/2018-5) and Google Re-
search Latin America (grant 25111). L. Pérez Cáceres acknowl-
edges the support of the Fondecyt Iniciación project 11190154.
M. López-Ibáñez is a “Beatriz Galindo” Senior Distinguished Re-
searcher (BEAGAL 18/00053) funded by the Spanish Ministry of
Science and Innovation (MICINN).

References
[1] F. Hutter, H. H. Hoos, K. Leyton-Brown, T. Stützle, ParamILS: an

automatic algorithm configuration framework, Journal of Artificial
Intelligence Research 36 (2009) 267–306.

[2] F. Hutter, H. H. Hoos, K. Leyton-Brown, Sequential model-based
optimization for general algorithm configuration, in: C. A. Coello
Coello (Ed.), Learning and Intelligent Optimization, 5th International
Conference, LION 5, volume 6683 of Lecture Notes in Computer Sci-
ence, Springer-Verlag, Heidelberg, Germany, 2011, pp. 507–523.

[3] C. Ansótegui, M. Sellmann, K. Tierney, A gender-based genetic al-
gorithm for the automatic configuration of algorithms, in: I. P. Gent
(Ed.), Principles and Practice of Constraint Programming, CP 2009,
volume 5732 of Lecture Notes in Computer Science, Springer-Verlag,
Heidelberg, Germany, 2009, pp. 142–157.

[4] M. López-Ibáñez, J. Dubois-Lacoste, L. Pérez Cáceres, T. Stützle,
M. Birattari, The irace package: Iterated racing for automatic al-
gorithm configuration, Operations Research Perspectives 3 (2016)
43–58.

[5] H. H. Hoos, Automated algorithm configuration and parameter tun-
ing, in: Y. Hamadi, E. Monfroy, F. Saubion (Eds.), Autonomous
Search, Springer-Verlag, Berlin, Germany, 2012, pp. 37–71.

[6] A. Franzin, T. Stützle, Revisiting simulated annealing: A component-
based analysis, Computers & Operations Research 104 (2019) 191–
206.

[7] C. Blum, B. Calvo, M. J. Blesa, FrogCOL and FrogMIS: New de-
centralized algorithms for finding large independent sets in graphs,
Swarm Intelligence 9 (2015) 205–227.

[8] M. Mühlenthaler, Fairness in Academic Course Timetabling,
Springer-Verlag, 2015.

[9] A. Yarimcam, S. Asta, E. Özcan, A. J. Parkes, Heuristic generation
via parameter tuning for online bin packing, in: P. Angelov, et al.
(Eds.), Evolving and Autonomous Learning Systems (EALS), 2014
IEEE Symposium on, IEEE, 2014, pp. 102–108.

[10] L. Pérez Cáceres, M. López-Ibáñez, H. H. Hoos, T. Stützle, An ex-
perimental study of adaptive capping in irace, in: R. Battiti, D. E.

Kvasov, Y. D. Sergeyev (Eds.), Learning and Intelligent Optimiza-
tion, 11th International Conference, LION 11, volume 10556 of Lec-
ture Notes in Computer Science, Springer-Verlag, Cham, Switzerland,
2017, pp. 235–250.

[11] N. Dang Thi Thanh, L. Pérez Cáceres, P. De Causmaecker, T. Stüt-
zle, Configuring irace using surrogate configuration benchmarks, in:
P. A. N. Bosman (Ed.), Proceedings of the Genetic and Evolutionary
Computation Conference, GECCO 2017, ACMPress, NewYork, NY,
2017, pp. 243–250.

[12] L. Pérez Cáceres, F. Pagnozzi, A. Franzin, T. Stützle, Automatic con-
figuration of GCC using irace, in: E. Lutton, P. Legrand, P. Parrend,
N. Monmarché, M. Schoenauer (Eds.), EA 2017: Artificial Evolu-
tion, volume 10764 of Lecture Notes in Computer Science, Springer-
Verlag, Heidelberg, Germany, 2017, pp. 202–216.

[13] L. Pérez Cáceres, T. Stützle, Exploring variable neighborhood search
for automatic algorithm configuration, Electronic Notes in Discrete
Mathematics 58 (2017) 167–174.

[14] P. Miranda, R. M. Silva, R. B. Prudêncio, Fine-tuning of support
vector machine parameters using racing algorithms, in: European
Symposium on Artificial Neural Networks, ESSAN, pp. 325–330.

[15] M. Lang, H. Kotthaus, P. Marwedel, C. Weihs, J. Rahnenführer,
B. Bischl, Automatic model selection for high-dimensional survival
analysis, Journal of Statistical Computation and Simulation 85 (2014)
62–76.

[16] B. Bischl, M. Lang, L. Kotthoff, J. Schiffner, J. Richter, E. Studerus,
G. Casalicchio, Z. M. Jones, mlr: Machine learning in R, Journal of
Machine Learning Research 17 (2016) 1–5.

[17] M. López-Ibáñez, T. Stützle, Automatically improving the anytime
behaviour of optimisation algorithms, European Journal of Opera-
tional Research 235 (2014) 569–582.

[18] T. Stützle, M. López-Ibáñez, Automated design of metaheuristic al-
gorithms, in: M. Gendreau, J.-Y. Potvin (Eds.), Handbook of Meta-
heuristics, volume 272 of International Series in Operations Research
& Management Science, Springer-Verlag, 2019, pp. 541–579.

[19] F. Pagnozzi, T. Stützle, Automatic design of hybrid stochastic lo-
cal search algorithms for permutation flowshop problems, European
Journal of Operational Research 276 (2019) 409–421.

[20] A. Brum, M. Ritt, Automatic algorithm configuration for the per-
mutation flow shop scheduling problem minimizing total completion
time, in: A. Liefooghe, M. López-Ibáñez (Eds.), Proceedings of Evo-
COP 2018 – 18th European Conference on Evolutionary Computa-
tion in Combinatorial Optimization, volume 10782 of Lecture Notes
in Computer Science, Springer-Verlag, Heidelberg, Germany, 2018,
pp. 85–100.

[21] A. Brum, M. Ritt, Automatic design of heuristics for minimizing
the makespan in permutation flow shops, in: Proceedings of the 2018
Congress on Evolutionary Computation (CEC2018), IEEEPress, Pis-
cataway, NJ, 2018, pp. 1–8.

[22] M.-E. Marmion, F. Mascia, M. López-Ibáñez, T. Stützle, Automatic
design of hybrid stochastic local search algorithms, in: M. J. Blesa,
C. Blum, P. Festa, A. Roli, M. Sampels (Eds.), HybridMetaheuristics,
volume 7919 of Lecture Notes in Computer Science, Springer-Verlag,
Heidelberg, Germany, 2013, pp. 144–158.

[23] M. De Souza, M. Ritt, Automatic grammar-based design of heuris-
tic algorithms for unconstrained binary quadratic programming, in:
A. Liefooghe, M. López-Ibáñez (Eds.), Proceedings of EvoCOP 2018
– 18th European Conference on Evolutionary Computation in Com-
binatorial Optimization, volume 10782 of Lecture Notes in Computer
Science, Springer-Verlag, Heidelberg, Germany, 2018, pp. 67–84.

[24] M. De Souza, M. Ritt, An automatically designed recombination
heuristic for the test-assignment problem, in: Proceedings of the 2018
Congress on Evolutionary Computation (CEC2018), IEEEPress, Pis-
cataway, NJ, 2018, pp. 1–8.

[25] F.Mascia, M. López-Ibáñez, J. Dubois-Lacoste, T. Stützle, Grammar-
based generation of stochastic local search heuristics through auto-
matic algorithm configuration tools, Computers & Operations Re-
search 51 (2014) 190–199.

[26] D. G. Ramos, M. Birattari, Automatic design of collective behaviors

9

http://dx.doi.org/10.1016/j.orp.2021.100186
https://github.com/souzamarcelo/acviz


Please cite this pre-print manuscript as: Marcelo De Souza, Marcus Ritt, Manuel López-Ibáñez, and Leslie Pérez Cáceres. ACVIZ: A Tool for the Visual Analysis of the
Configuration of Algorithms with irace. Operations Research Perspectives, 2021. doi: 10.1016/j.orp.2021.100186

for robots that can display and perceive colors, Applied Sciences 10
(2020) 4654.

[27] B. Fisset, C. Dhaenens, L. Jourdan, MO-Mineclust: A framework
for multi-objective clustering, in: C. Dhaenens, L. Jourdan, M.-E.
Marmion (Eds.), Learning and Intelligent Optimization, 9th Interna-
tional Conference, LION 9, volume 8994 of Lecture Notes in Com-
puter Science, Springer-Verlag, Heidelberg, Germany, 2015, pp. 293–
305.

[28] G. Francesca, M. Brambilla, A. Brutschy, V. Trianni, M. Birattari,
AutoMoDe: A novel approach to the automatic design of control soft-
ware for robot swarms, Swarm Intelligence 8 (2014) 89–112.

[29] F. Campelo, L. S. Batista, C. Aranha, The MOEADr package: A
component-based framework for multiobjective evolutionary algo-
rithms based on decomposition, Journal of Statistical Software 92
(2020).

[30] L. C. T. Bezerra, M. López-Ibáñez, T. Stützle, Automatically de-
signing state-of-the-art multi- and many-objective evolutionary algo-
rithms, Evolutionary Computation 28 (2020) 195–226.

[31] L. C. T. Bezerra, M. López-Ibáñez, T. Stützle, Automatic component-
wise design of multi-objective evolutionary algorithms, IEEE Trans-
actions on Evolutionary Computation 20 (2016) 403–417.

[32] L. C. T. Bezerra, M. López-Ibáñez, T. Stützle, Automatic design of
evolutionary algorithms for multi-objective combinatorial optimiza-
tion, in: T. Bartz-Beielstein, J. Branke, B. Filipič, J. Smith (Eds.),
PPSN 2014, volume 8672 of Lecture Notes in Computer Science,
Springer-Verlag, Heidelberg, Germany, 2014, pp. 508–517.

[33] M. López-Ibáñez, T. Stützle, The automatic design of multi-objective
ant colony optimization algorithms, IEEE Transactions on Evolution-
ary Computation 16 (2012) 861–875.

[34] L. C. T. Bezerra, M. López-Ibáñez, T. Stützle, Automatic genera-
tion of multi-objective ACO algorithms for the biobjective knapsack,
in: M. Dorigo, et al. (Eds.), Swarm Intelligence, 8th International
Conference, ANTS 2012, volume 7461 of Lecture Notes in Computer
Science, Springer-Verlag, Heidelberg, Germany, 2012, pp. 37–48.

[35] J. Dubois-Lacoste, M. López-Ibáñez, T. Stützle, Automatic configura-
tion of state-of-the-art multi-objective optimizers using the TP+PLS
framework, in: N. Krasnogor, P. L. Lanzi (Eds.), Proceedings of the
Genetic and Evolutionary Computation Conference, GECCO 2011,
ACM Press, New York, NY, 2011, pp. 2019–2026.

[36] J. Ferrer, M. López-Ibáñez, E. Alba, Reliable simulation-optimization
of traffic lights in a real-world city, Applied Soft Computing 78 (2019)
697–711.

[37] C. Fawcett, H. H. Hoos, Analysing differences between algorithm
configurations through ablation, Journal of Heuristics 22 (2016) 431–
458.

[38] M. Birattari, Tuning Metaheuristics: A Machine Learning Perspec-
tive, volume 197 of Studies in Computational Intelligence, Springer-
Verlag, Berlin, Heidelberg, 2009.

[39] P. Balaprakash, M. Birattari, T. Stützle, Improvement strategies
for the F-race algorithm: Sampling design and iterative refinement,
in: T. Bartz-Beielstein, M. J. Blesa, C. Blum, B. Naujoks, A. Roli,
G. Rudolph, M. Sampels (Eds.), Hybrid Metaheuristics, volume 4771
of Lecture Notes in Computer Science, Springer-Verlag, Heidelberg,
Germany, 2007, pp. 108–122.

[40] M. Birattari, Z. Yuan, P. Balaprakash, T. Stützle, F-race and iterated
F-race: An overview, in: T. Bartz-Beielstein, M. Chiarandini, L. Pa-
quete, M. Preuss (Eds.), Experimental Methods for the Analysis of
Optimization Algorithms, Springer-Verlag, Berlin, Germany, 2010,
pp. 311–336.

[41] F. Hutter, M. López-Ibáñez, C. Fawcett, M. T. Lindauer, H. H. Hoos,
K. Leyton-Brown, T. Stützle, AClib: A benchmark library for algo-
rithm configuration, in: P. M. Pardalos, M. G. C. Resende, C. Vo-
giatzis, J. L. Walteros (Eds.), Learning and Intelligent Optimization,
8th International Conference, LION 8, volume 8426 of Lecture Notes
in Computer Science, Springer-Verlag, Heidelberg, Germany, 2014,
pp. 36–40.

[42] T. Stützle, ACOTSP: A software package of various ant colony op-
timization algorithms applied to the symmetric traveling salesman

problem, 2002.
[43] M. Dorigo, T. Stützle, Ant Colony Optimization, MIT Press, Cam-

bridge, MA, 2004.
[44] M. López-Ibáñez, J. Dubois-Lacoste, L. Pérez Cáceres, T. Stützle,

M. Birattari, The irace package: Iterated racing for automatic algo-
rithm configuration (supplementary material), http://iridia.ulb.ac.
be/supp/IridiaSupp2016-003, 2016.

[45] D. S. Johnson, L. A. McGeoch, C. Rego, F. Glover, 8th DIMACS
implementation challenge: The traveling salesman problem, http://
dimacs.rutgers.edu/archive/Challenges/TSP, 2001.

[46] D. Babić, F. Hutter, Spear theorem prover, in: SAT’08: Proceedings
of the SAT 2008 Race.

[47] I. P. Gent, H. H. Hoos, P. Prosser, T. Walsh, Morphing: Combining
structure and randomness, in: Proceedings of the Sixteenth National
Conference on Artificial Intelligence, pp. 654–660.

[48] M. De Souza, M. Ritt, M. López-Ibáñez, L. Pérez Cáceres, ACVIZ:
Algorithm configuration visualizations for irace: Supplementary ma-
terial, https://doi.org/10.5281/zenodo.4714582, 2020.

10

http://dx.doi.org/10.1016/j.orp.2021.100186
http://iridia.ulb.ac.be/supp/IridiaSupp2016-003
http://iridia.ulb.ac.be/supp/IridiaSupp2016-003
http://dimacs.rutgers.edu/archive/Challenges/TSP
http://dimacs.rutgers.edu/archive/Challenges/TSP
https://doi.org/10.5281/zenodo.4714582

