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The longest common subsequence problem is a classical string problem that concerns finding the common
part of a set of strings. It has several important applications, for example, pattern recognition or com-
putational biology. Most research efforts up to now have focused on solving this problem optimally. In
comparison, only few works exist dealing with heuristic approaches. In this work we present a determin-
istic beam search algorithm. The results show that our algorithm outperforms the current state-of-the-art

approaches not only in solution quality but often also in computation time.
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1. Introduction

The longest common subsequence (LCS) problem is a classical
string problem. Given a string s over an alphabet X, each string that
can be obtained from s by deleting characters is called a subsequence
of s. Given a problem instance (%, 2), where % = {51,532, ...,5q} IS a
set of n strings over a finite alphabet X, the LCS problem seeks to
find the longest string t* that is a subsequence of all the strings in
<. Such a string t* is called a LCS of the strings in .%. Traditional
computer science applications of this problem are in data compres-
sion [31], syntactic pattern recognition [22], file comparison [1], text
edition [26] and query optimization in databases [27]. More recent
applications include computational biology [30,19] and the produc-
tion of circuits in field programmable gate arrays [7].

The LCS problem was shown to be NP-hard [23] for an arbitrary
number n of input strings. If n is fixed, the problem is polynomially
solvable by dynamic programming [16]. Standard dynamic program-
ming approaches for this problem require O(I") of time and space,
where [ is the length of the longest input string and n is the num-
ber of strings. While several improvements may reduce the com-
plexity of standard dynamic programming to O(I"~1) (Bergoth et al.
[3] provided numerous references), dynamic programming becomes
quickly impractical when n grows.

An alternative to dynamic programming was proposed by Hsu
and Du [17]. This algorithm was further improved in [11,29] by in-
corporating branch and bound techniques. The resulting algorithm,
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called specialized branching (SB), has a complexity of O(n|X|''),
where t* is the LCS. According to the empirical results of Easton and
Singireddy [10], SB outperforms dynamic programming for large n
and small [. Additionally, Singireddy [29] proposed an integer pro-
gramming approach based on branch and cut.

Approximate methods for the LCS problem were first proposed
by Chin and Poon [8] and Jiang and Li [20]. The long run algorithm
(LR) [20] returns the LCS consisting of a single letter, which is al-
ways within a factor of || of the optimal solution. The expansion
algorithm (ExpANSION) proposed by Bonizzoni et al. [6] and the BEST-
NEXT heuristic [12,18] also guarantee an approximation factor of | 2|;
however, their results are typically much better than those of LR in
terms of solution quality. Guenoche and Vitte [15] described a greedy
algorithm that uses both forward and backward strategies, and the
resulting solutions are merged subsequently. Earlier approximate al-
gorithms for the LCS problem can be found in Bergroth et al. [2] and
Brisk et al. [7].

More recently, Easton and Singireddy [10] proposed a large
neighbourhood search heuristic called time horizon SB (THSB) that
makes internal use of the SB algorithm. In addition, they imple-
mented a variant of Guenoche and Vitte’s algorithm [15], referred
to as G&V, that selects the best solution obtained from running the
original algorithm with four different greedy functions proposed by
Guenoche [14]. Easton and Singireddy [10] compared their algorithm
with G&V, LR and ExpPANsION, showing that THSB was able to obtain
better results than all the competitors in terms of solution quality.
Their results also showed that G&V outperforms ExPANSION and LR
with respect to solution quality, while requiring less computation
time than EXPANSION and a computation time comparable to the one
of LR. Finally, Shyu and Tsai [28] studied the application of ant colony
optimization (ACO) to the LCS problem and concluded that their
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algorithm dominates both EXPANSION and BEST-NEXT in terms of so-
lution quality, while being much faster than EXPANSION.

In this work we propose the application of beam search (BS) to
the LCS problem. BS is a classical tree search method that was intro-
duced in the context of scheduling [24]. The central idea behind BS
is the parallel and non-independent construction of a limited num-
ber of solutions with the help of a greedy function and an upper
bound to evaluate partial solutions. The algorithm presented in this
paper is an extended version of the preliminary approach presented
by Blum and Blesa [4]. Extensions with respect to the preliminary
approach include the use of an additional method for pruning the
search space and an exhaustive experimental evaluation. We applied
two configurations of our algorithm to three different sets of bench-
mark instances and compared the results to the best techniques from
the literature. The first configuration (henceforth called low time) is
chosen such that the algorithm is fast, whereas the second configu-
ration (referred to as high quality) aims for higher solution quality.
With regard to the benchmark set introduced in [4], BS (low time) ob-
tains on average an improvement of 7.25% over the best known solu-
tions, while the average improvement of BS (high quality) is 13.625%
over the best known solutions. For the benchmark set introduced in
[10], the heuristic THSB (introduced in the same paper) is the best
known algorithm. THSB was also tested with low time and high quality
configurations. When compared with THSB (low time), BS (low time)
obtains an average improvement of 18.8% in terms of solution qual-
ity. Moreover, BS (low time) improves the results obtained by THBS
(high quality) on average by 10.1%. This result is achieved using only
3.7% of the computation time required by THBS (high quality). On
the other hand, BS (high quality) improves the results of THBS (high
quality) on average by 12.7%, while requiring only half of its compu-
tation time. That is, computation time is decreased by 49.4%. With
respect to the third benchmark set, we compared the ACO algorithm
that is the best algorithm known for these instances. BS (low time)
obtains an average overall improvement of 2.6% in solution quality
while reducing computation time by 90.3%. On the other hand, BS
(high quality) is able to improve the ACO results on average by 5.9%.
However, this comes at the cost of spending about twice as much
computation time.

This paper is organized as follows. In Section 2 we present the
BS approach to the LCS problem. The experimental evaluation of
the algorithms is shown in Section 3. Finally, in Section 4 we offer
conclusion.

2. Beam search

BS is an incomplete derivative of branch and bound that was in-
troduced in [24]. In the following we briefly describe the working of
a standard version of BS. The central idea behind BS is to allow the
extension of partial solutions in several possible ways. At each step,
the algorithm chooses at most | uky,,] feasible extensions of the par-
tial solutions stored in a set B, called the beam. Hereby, ki, is the so-
called beam width that limits the size of B, and x> 1 is a parameter of
the algorithm. The choice of feasible extensions is done deterministi-
cally by means of a greedy function that assigns a weight to each fea-
sible extension. At the end of each step, the algorithm creates a new
beam B by selecting up to ky,, partial solutions from the set of cho-
sen feasible extensions. For that purpose, BS algorithms calculate—in
the case of maximization—an upper bound value for each chosen
extension. Only the maximally ky,, best extensions—with respect to
the upper bound—are chosen to constitute the new set B. Finally, the
best found complete solution is returned.

Most BS applications from the literature are to scheduling prob-
lems (see, e.g., [25,13,32]). Only few applications to other types of
problems exist (see, e.g., [21]). Crucial components of BS are the un-
derlying constructive heuristic that defines the feasible extensions
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Fig. 1. Search tree defined by the construction mechanism of BEST-NEXT, for example
instance [** = (% = {51,52,53}, 2 = {a,b, ¢, d}), where s; = bcadcdc, s, = caabadd, and
s3 = bacddcd. The arc labels are explained in the text of Sections 2.1 and 2.3.

of partial solutions and the upper bound function for evaluating par-
tial solutions. In the following we present our implementation of BS
for the LCS problem, first focusing on these two crucial components.

2.1. Constructive heuristic

The so-called BEST-NEXT heuristic [12,18] is a fast heuristic for
the LCS problem. Given a problem instance (%, ), the BEST-NEXT
heuristic produces a common subsequence t from left to right,
adding at each construction step exactly one letter of the alphabet
to the current subsequence. The algorithm stops when no more let-
ters can be added, that is, when each further letter would produce
an invalid solution. The pseudo-code of this heuristic is shown in
Algorithm 1.

Algorithm 1.

BEST-NEXT heuristic for the LCS problem
1: input: a problem instance (%, )

2: initialization: ¢ := ¢ (where ¢ denotes the empty string)
3:  while 21> 0 do

4: a := Choose_From(2")

5: t:=ta

6: end while

7:

output: common subsequence t

For explaining and illustrating in detail the working of BEST-
NEXT we consider the problem instance I¥* = (¥ = {51,52,53},2 =
{a,b,c,d}), where s; = bcadcdc, s, = caabadd, and s3 = bacddcd.
Fig. 1 shows all possible solution constructions with respect to the
construction mechanism of BEST-NEXT in the form of a search tree.
The root node of this tree contains the empty string denoted by #.
The arc labels that are shown in the form of triples of integers will
be explained in the context of the greedy functions later on. The
definitions and notations that we introduce in the following assume
a given partial solution ¢t to a problem instance (%, 2):

1. Let s; = x; - y; be the partition of s; into substrings x; and y; such
that t is a subsequence of x;, and y; has maximal length. Given this
partition, which is well defined, we keep track of position pointers
pi = |x;| for i=1,...,n. The partition into substrings as well as the
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Fig. 2. In this graphic we consider instance I** = (% = {s1, 52,53}, 2 = {a, b, c,d}), where s; = bcadcdc, s, = caabadd, and s; = bacddcd. Moreover, the current partial solution is
t=ba. (a), (b), and (c) show the corresponding division of s; into x; and y;, as well as the setting of the position pointers p; and the next positions of the four letters in y;.
In case a letter does not appear in y;, the corresponding pointer is set to co. This is the case for letters a and b in y;: p? := co and p? := co.

corresponding position pointers is shown with respect to problem
instance I** and partial solution t = ba as shown in Fig. 2.

2. The position of the first appearance of a letter a € X in a string
s; € & after the position pointer p; is well defined and denoted
by p{. In case letter a € 2 does not appear in y;, p{ is set to co.
Again, see Fig. 2 for an example.

3. Letter a € X is called dominated, if there exists at least one letter
b € X, a#b, such that pf’<p? for i = 1,...,n. For an example
consider partial solution t = b for problem instance IX. As letter
a always appears before letter d in y; (Vi € {1,2,3}), we say that a
dominates d.

4. 3™ c ¥ denotes the set of non-dominated letters of the alphabet
2 with respect to t. Obviously it is required that a letter a € Zt“d
appears in each string s; at least once after the position pointer p;.

Function Choose_From(E?d)—see line 4 of Algorithm 1—is used
to choose at each iteration exactly one letter from X™. The chosen
letter is subsequently appended to t. A letter is chosen by means of
a greedy function. In the following we present two different greedy
functions that may be used. The first one—henceforth denoted by
n1()—is known from the literature (see, e.g., Fraser [12]). The sec-
ond one—henceforth denoted by 7,()—is new. They are defined as
follows:

ni(a) == min{|s;| — pfli=1,...,n}, va e M (1)

1
(@) ::( > P,-ly—ilpi) , VaexM (2)

i=1,...n

For an example, see Fig. 1. Note that the values assigned by greedy
function #;() can be found at the first position of the triples of inte-
gers that serve as arc labels.

Function Choose_From(Z™) chooses a e XM such that
nq(a)=n4(b) (respectively, ,(a)=n,(b)) for all b € Z‘;d. If more that
one letter fulfills this condition, the one that is lexicographically
smaller is taken.

2.2. Upper bound

A second crucial element of BS is the upper bound function for
evaluating partial solutions. Remember that a given common sub-
sequence t splits each string s; € % into a first part x; and into a
second part y;, that is, s; = x; - y;. Henceforth, |y;|, denotes the num-
ber of occurrences of letter a € X in y;. The upper bound value of ¢
is defined as follows:

UB(t) := [t| + Y _ min{|yilali=1,...,n} (3)
aeX

In words, for each letter a € 2 the minimum number (over i=1,...,n)
of its occurrences in y; is taken. Summing up these minima and
adding the resulting sum to the length of ¢t result in the upper bound

value. For an example, consider the partial solution t = ba of the
example instance shown in Fig. 2. As letters a, b, and ¢ do not appear
in the remaining part of string (y,), they do not contribute to the
upper bound value. On the other side, letter d appears at least twice
in each y; (Vi € {1,2,3}). Therefore, the upper bound value of ba is
bal| +2=2+2=4.

Note that this upper bound function can be efficiently computed
by keeping appropriate data structures. Even though the resulting
upper bound values are not very tight, we will show in the section
on experimental results that the bound is able to effectively guide
the search process of BS.

2.3. The BS algorithm

In the following we give a technical description of the BS that we
implemented. A practical example will be given afterwards. Our BS
algorithm—see Algorithm 2—works roughly as follows: apart from
a problem instance (%, ), the algorithm requires three input pa-
rameters: kyy € Z* is the so-called beam width, u € Z*>1is a
parameter that is used to determine the number of extensions that
can be chosen at each step, and #() is the particular greedy function
used, either #;() or n,(). Throughout the execution of the algorithm,
there is also a set B of subsequences called the beam. At the start of
the algorithm B only contains the empty string denoted by ¢, that
is, B := {#}. Let C denote the set of all possible extensions of the
subsequences in B.! At each step, the best | ukp, | extensions from
C are selected with respect to the greedy function. In case a chosen
extension represents a complete solution, it is stored in set Beompi.
Otherwise, it is added to set B, in case its upper bound value UB() is
greater than the length of the best-so-far solution ty,. At the end of
each step, the new beam B is reduced if it contains more than kp,,
partial solutions. This is done by evaluating the subsequences in B
by means of the upper bound function UB(), and by selecting the k,
subsequences with the greatest upper bound values.

Algorithm 2.

Beam search (BS) for the LCS problem

1: input: a problem instance (%, X), kpw, 1t ()
2 Bcompl =0, B:= {0}, thss := 0

3: while B#£¢ do

4 C := Produce_Extensions(B)

5: C := Filter_Extensions(C) ({this function is optional}
6 B:=¢

7 for k=1,..., min{| tkpw ], |C|} do

8 za := Choose_Best_Extension(C, ())

9: t:=za

10: if UB(t) = |t| then

! Remember that the construction mechanism of the BEST-NEXT heuristic is
based on extending a subsequence t by appending one letter from Z{‘d.



C. Blum et al. / Computers & Operations Research 36 (2009) 3178 -3186 3181

11: Bcompl = Bcompl U {t}

12: if |t| > |tpsf| thentys := ¢ end if

13: else

14: if uB(t) > |tpsr| then B := BU {t} end if
15: end if

16: C:=C\{t}

17: end for

18: B := Reduce(B, kpy)

19: end while

20: output: argmax{|t||t € Beompi}

We next explain the functions of Algorithm 2 in detail. The al-
gorithm uses four different functions. Given the current beam B as
input, function Produce_Extensions(B) produces the set C of non-
dominated extensions of all the subsequences in B. More specifi-
cally, C is a set of subsequences ta, where t € B and a ¢ Z{‘d. The
second function, Filter_Extensions(C), extends the non-domination
relation—as defined in Section 2.1—from the extensions of one spe-
cific subsequence to the extensions of different subsequences of the
same length. Formally, given two extensions ta,zb € C, where t#z
but not necessarily a#b, ta dominates zb if and only if the position
pointers concerning a appear before the position pointers concern-
ing b in the corresponding remaining parts of the n strings. For an
example consider subsequences t =ba and z=ad with respect to the
example instance shown in Fig. 2. Moreover, consider in both cases
the extension with letter d, that is, the considered extensions are td
and zd. The position pointers in the case of td are p‘lj =4, pg =6, and
pg =4, whereas in the case of zd the position pointers are p‘lj =6,
pd =7, and pd = 5. Therefore, td dominates zd.

The third function, Choose_Best_Extension(C,#()), is used for
choosing extensions from C. This function requires one of the two
greedy functions outlined before as a parameter. Note that for the
comparison of two extensions ta and zb from C the greedy function
is only useful in case t =z, while it might be misleading in case t#z.
We solved this problem as follows. First, instead of the weights as-
signed by a greedy function, we use the corresponding ranks. More
specifically, given all extensions {tala € Z?d} of a subsequence t, the
extension tb with #(tb) >n(ta) for all a Z?d receives rank 1, de-
noted by r(tb) = 1. The extension with the second highest greedy
weight receives rank 2, etc. Note that the notation x(a), as intro-
duced in Section 2.1, is extended here to the notation #(ta). For an
example, see the search tree shown in Fig. 1. The second integer in
the triples that serve as arc labels shows the rank that corresponds
to the weight assigned by greedy function #;().

For evaluating an extension ta we use the sum of the ranks of the
greedy weights that correspond to the construction steps performed
to construct subsequence ta, that is

1t-1
v(ta) :=r(t1) + (Z 1(t1 "‘titiﬂ)) + 1(ta) (4)

i=1

where tq - - - t; denotes the substring of t from position 1 to position i,
and t;, 1 denotes the letter at position i + 1 of subsequence t. In con-
trast to the greedy function weights, these newly defined v() values
can be used to compare the extensions of different subsequences.
In fact, a call of function Choose_Best_Extension(C, 5()) returns the
extension from C with maximal v()~! value. For illustrating this con-
cept we again refer to Fig. 1. The third integer in the triples that
serve as arc labels represents the value v() defined above. For exam-
ple, the value of v(td), where t = ba, is 5 because r(b) is 3, the rank
of the extension ba is 1, and the rank of the extension td is again 1.
Finally, the last function used by the BS algorithm is Reduce(B, kpw ).
In case |B| > kpy, this function removes from B step-by-step those
subsequences t that have an upper bound value UB(t) smaller or

equal to the upper bound value of all the other subsequences in B.
The removal process stops once |B| = k.

2.4. Example for the working of BS

In the following we outline the steps of BS when applied to ex-
ample instance I** (see Fig. 2). We use greedy function #4(), a beam
width of 2 (that is, ky=2), and p=1.5. This means that, at each step,
we are allowed to choose maximally 2 x 1.5 = 3 extensions of the
subsequences that are in the beam B. The search tree that is shown
in Fig. 1 shows that solution badd is the unique optimal solution of
instance I°X. Note that the result of applying BEST-NEXT to I*¥X is add,
which is a suboptimal solution.

BS starts with a beam that only contains the empty string, that is,
B={¢}. In the first step we choose the three extensions of the empty
string with minimal rank-sum. Remember that the rank-sums are
shown in the third position of the triples that serve as arc labels
in the search tree. Accordingly, the chosen extensions are a, b and
c. As the beam width is two, we have to discard one of the chosen
extensions. For that purpose the upper bound value is computed for
all three extensions. It can be easily verified that UB(a)=3, UB(b)=4,
and UB(c) = 3. Given these values, extension c is discarded because
its upper bound value is smaller than the upper bound value of b,
and because c is lexicographically greater than a. Therefore, after the
first step, it holds that B = {a, b}. The possible extensions of b are ba
and bd. However, as explained before, ba dominates bd. Therefore,
bd is not considered. We neither consider extension ad, since it is
also dominated by ba. Therefore, the only extension chosen in the
second step is ba, that is, B={ba}. In the third and fourth steps of BS,
the only possible extensions are chosen and the algorithm provides
as output the optimal solution badd.

3. Experiments

We implemented our algorithm in ANSI C + + and compiled the
software with GCC 4.1.2 in GNU/Linux 2.6.20. Experiments were run
on an Intel Core2 1.66 GHz with 2 MB of cache size.

First, we conducted extensive tuning experiments for finding
appropriate parameter settings. Remember that BS has three param-
eters. The beam width parameter ky,, denotes the number of subse-
quences that BS keeps in the beam B at each step. In general, larger
values of ky,, produce better results at the cost of higher compu-
tation times. The second parameter, y, determines the number of
extensions that are chosen at each step of the algorithm. Low val-
ues of u make the search rely completely on the greedy function #(),
while high values of u allow solutions with lower heuristic values
and, at the same time, with greater upper bound values to be chosen
for the beam of the next step. Finally, 7() may correspond to greedy
function 74() as defined in Eq. (1), or #,() as defined in Eq. (2). For
space reasons we decided not to present the tuning results. Instead,
we refer the interested reader to [5]. The chosen parameter settings
will be indicated for each benchmark set.

3.1. Benchmark instances

We considered three different sets of instances for our experi-
ments. The first set, henceforth denoted by BB, was introduced by
Blum and Blesa in [4] and generated by the following procedure.
First, for each combination of an alphabet X, a number of strings n
and a length [, a base string of length [ was created by randomly gen-
erating letters from 2. Then, each of the n strings was produced by
traversing the base string and deleting each letter with a probability
of 0.1. Ten instances were generated for each of the 80 combinations
of |2 € {2,4,8,24}, n € {10,100} and [ € {100,200, 300,...,1000}.
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Fig. 3. Benefits of using function Filter_Extensions(C) in BS. (a) Instances with n=10 and (b) instances with n = 100.

In addition, we applied BS to two sets of benchmark instances
from the literature. Set ES was introduced by Easton and Singireddy
[10]. It is composed of 50 instances per combination of |X|, n, and
I. These instances were created by sequentially generating each let-
ter with a probability of 1/|2]. A third set of instances, denoted by
ST, stems from Shyu and Tsai [28]. Their instances are biologically
inspired, and thus they consider an alphabet of size |X| = 4, corre-
sponding to DNA sequences, or of size |X| = 20, corresponding to
protein sequences. Shyu and Tsai studied three different types of in-
stances. One was randomly generated, presumably in the same way
as Easton and Singireddy’s [10] instances. The other two sets consist
of real DNA and protein sequences of rats and viruses.

3.2. Benefits of filtering

As a first step, we wanted to study the effect of using the func-
tion Filter_Children() in Algorithm 2. For this purpose we applied
the high quality configuration of BS? with and without the use of
this function to all the problem instances of set BB. As an illustra-
tion, we show the results obtained for all instances with [X] =2 in
Fig. 3. Fig. 3(a) presents the results for all instances with 10 strings
(n=10), while Fig. 3(b) shows the corresponding results for all in-
stances with 100 strings. The results are shown in terms of the dif-
ference (A4) between the algorithm using filtering and the algorithm
that is not using filtering. This means that positive values in terms of
solution quality indicate an advantage for the algorithm using filter-
ing. However, positive values in terms of computation time indicate
that the algorithm using filtering is slower.

The use of filtering typically produces better quality solutions for
instances with a small number of strings (n = 10), as shown graphi-
cally in the lower part of Fig. 3(a). Interestingly, the longer the length
of the strings, the greater is the advantage of the algorithm using
filtering. In the same way, the computation time overhead of using
filtering increases with the length of the strings, as shown in the up-
per part of Fig. 3(a). On the other hand, for large number of strings
(n=100), filtering may actually reduce sometimes the computation
time, as shown in Fig. 3(b). For instances with n =100, however, fil-
tering is not always beneficial in terms of solution quality. Nonethe-
less, the median difference (as denoted by the line within each box)
is positive most of the times. Thus, on average filtering does improve
solution quality. We conclude from these results that the use of fil-
tering generally pays off in terms of solution quality, while incurring

2 For the specification of this high quality configuration, see Section 3.3.

in a typically small computation time overhead. Therefore, filtering
will be used in BS for all further experiments.

3.3. Experimental results for set BB

We selected two configurations of BS with respect to the results
of a previous experimental analysis of parameters [5]. The first one
(referred to as low time) aims at short computation times, while the
second configuration (high quality) aims at high solution quality. The
low time configuration corresponds to parameters #(), kpw =10, and
u=1.5if | 2] =2, and u=3 otherwise. The high quality configuration
is the same but using a larger beam width of ky,, = 100. The results
of the two configurations are compared in Table 1 with the results
obtained by the classical ExpPANSION and BEST-NEXT algorithms. The
table columns with heading |t*| present the solution quality, whereas
the columns with heading “Time” show the computation time in
seconds. Each value in these columns corresponds to the mean and,
in parentheses, the standard deviation of the results for 10 instances
with the same characteristics. Finally, the table column with heading
A presents the improvement of BS with respect to the best result
obtained between ExpANSION and BEST-NExT.3 This measure is given
in % and is computed as (100 - X/Y) — 100, where X is the result
obtained by BS, and Y is the best result between ExpANsION and
BEST-NEXT.

The results are clearly in favour of BS. First, the best results are al-
ways obtained by the high quality configuration of BS, which is even
noticeably faster than EXpANSION. Therefore, this configuration of BS
outperforms EXPANSION in all aspects. The average improvement of
BS (high quality) over the best results obtained between EXPANSION
and BEST-NEXT is 13.625%. Second, although BEST-NEXT is evidently
the fastest approach, the quality of its solutions is very poor com-
pared to the results of BS (low time). Note that even BS (low time)
achieves an average improvement of 7.25% over the best results ob-
tained between EXPANSION and BEST-NEXT.

3.4. Experimental results for set ES

For the application to the benchmark instances proposed in [10],
we also selected a low time and a high quality configuration for BS.
The configuration using kyy = 10, #,() and u = 1.5 gives good solu-
tions for all instances in a relatively short time. On the other hand,
configurations 7,(), kpw =100 and u=1.5 for | 2|=2, and 1,(), kpw=>50,

3 Note that a negative improvement corresponds to a decrease in performance
in comparison to the competitors.
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Table 1
Comparison of BS with EXPANSION and BEST-NEXT for instances of set BB [4].
Instance Expansion BEST-NEXT BS (low time) BS (high quality)
|12 n 1 [t*] Time |t*| Time |t*] A (%) Time |t*] A (%) Time
2 10 1000 515.4 (16.2) 439 (3.3) 556.9 (14.4) 0.0 (0.0) 613.2 (14.6) 10.1 0.6 (0.0) 648.0 (15.0) 16.4 13.6 (0.6)
100 1000 476.7 (5.5) 932.9 (64.7) 503.3 (6.8) 0.1 (0.0) 531.6 (6.1) 5.6 6.3 (0.2) 541.0 (8.0) 7.5 72.5 (3.9)
4 10 1000 484.3 (18.3) 2007.5 (276.5) 382.7 (16.1) 0.0 (0.0) 4773 (15.7) -14 0.9 (0.0) 534.7 (12.6) 104 18.1 (0.5)
100 1000 266.0 (5.4) 3082.6 (135.8) 319.3 (4.9) 0.1 (0.0) 350.7 (10.1) 9.8 9.3 (0.2) 369.3 (4.6) 15.7 121.6 (2.2)
8 10 1000 436.2 (18.0) 1525.9 (195.0) 293.6 (15.6) 0.0 (0.0) 420.0 (27.0) -3.7 0.7 (0.0) 462.3 (12.9) 6.0 21.2 (0.6)
100 1000 159.4 (9.3) 2633.1 (48.6) 208.1 (6.4) 0.1 (0.0) 241.5(4.5) 16.0 10.6 (0.3) 258.7 (4.7) 243 154.7 (2.0)
24 10 1000 3749 (8.2) 794.6 (75.4) 229.2 (25.3) 0.0 (0.0) 382.6 (10.0) 2.1 1.3 (0.0) 385.6 (7.0) 2.9 374 (14)
100 1000 64.2 (8.4) 2717.3 (80.4) 117.4 (44) 0.2 (0.0) 140.3 (5.7) 19.5 13.5 (0.2) 147.7 (4.6) 258 268.3 (8.0)
BS (low time): #,(), kow =10, and u=1.5 for |2| =2 or u=3 for |X|>2.
BS (high quality): #;(), kpw = 100, and pu=1.5 for |X|=2 or pu=3 for |2] > 2.
Table 2
Comparison of BS with G&V and THSB for instances of set ES [10].
Instance G&V THSB (low time) THSB (high quality) BS (low time) BS (high quality)
|12 n 1 [t Time |t Time |t*| Time |t A (%) Time |t A (%) Time
2 10 1000 562.8 0.0 562.0 0.4 577.2 24.5 579.9 (4.8) 0.5 0.7 (0.0) 592.6 (4.2) 2.7 14.8 (0.3)
50 1000 503.7 0.1 506.1 1.0 511.3 85.1 516.3 (1.9) 1.0 3.7 (0.1) 521.9 (1.8) 2.1 43.5 (0.4)
100 1000 4896 0.1 493.2 2.2 497.9 196.2 502.1 (1.8) 0.8 7.4 (0.1) 506.0 (1.8) 1.6 78.6 (5.0)
10 10 1000 1534 0.0 156.7 2.0 162.5 90.6 185.5 (2.6) 14.2 0.5 (0.0) 192.2 (2.0) 18.3 9.4 (0.2)
50 1000 1054 0.1 107.6 0.8 109.8 69.6 127.9 (1.2) 16.5 1.5 (0.0) 129.6 (1.1) 18.0 18.8 (0.3)
100 1000 96.6 0.2 98.7 1.1 100.7 58.6 116.5 (0.8) 15.5 2.7 (0.1) 117.9 (0.9) 171 30.6 (0.4)
25 10 2500 1836 0.1 173.8 8.8 188.9 102.2 214.3(2.2) 13.4 2.7 (0.1) 224.3 (1.9) 18.7 51.5 (0.8)
50 2500 1127 02 106.8 2.2 1153 52.4 131.3 (0.9) 13.9 5.5 (0.1) 133.0 (0.8) 154 76.6 (1.2)
100 2500 1015 04 97.7 2.5 104.1 81.1 116.3 (0.9) 11.7 9.1 (0.1) 118.1 (0.8) 134 118.6 (3.7)
100 10 5000 1136 0.2 92.2 36.0 117.8 6,099.3 132.5 (1.7) 12.5 19.1 (0.3) 139.6 (1.4) 18.5 394.6 (7.0)
50 5000 584 0.7 522 1857 60.9 4,273.0 67.9 (0.5) 115 27.8 (0.5) 69.5 (0.6) 14.1 490.2 (10.7)
100 5000 504 1.3 46.5 353.7 52.7 11,1283 57.6 (0.6) 9.3 42.2 (0.8) 59.0 (0.3) 12.0 602.0 (8.8)

Results for G&V and THSB are taken from [10].
BS (low time): (), kpw =10, u=1.5.
BS (high quality): #,(), kow =100, u=1.5 for || =2; 1,(), kew =50, u=3 for |2| > 2.

u=3 for |X| > 2, give the best solution quality but require consider-
ably longer computation times. Interestingly, the parameter settings
determined by tuning BS for these instances (see [5]) are somewhat
different from the ones determined for benchmark set BB. Most no-
ticeably, the greedy function #,() performs clearly better than #,(),
specially for large n (number of strings). These differences indicate
that the methodology used to generate the instances can have an
influence on the performance of the greedy functions.

Table 2 presents—both for high quality and low time
configurations—a comparison of BS with the results of THSB and
G&V. Note that THSB is currently the best available algorithm for
benchmark set ES. The results of THSB and G&V, obtained on a
1.5 GHz Pentium IV that should be slightly slower than our machine,
are taken from [10]. The table columns with heading |t*| provide the
solution quality, whereas the columns with heading “Time” show
the computation time in seconds. Each value in these columns cor-
responds to the mean of the results for 50 instances with the same
characteristics. In the case of BS we additionally show the standard
deviation in parentheses. Finally, the table column with heading 4
presents the improvement of BS with respect to the results obtained
by THSB (high quality). This measure is given in % and is computed
as (100 - X/Y) — 100, where X is the result obtained by BS, and Y is
the result of THSB (high quality).

The results presented in Table 2 show that the low time configu-
ration of BS dominates the high quality configuration of THSB in all
aspects. That is, the low time configuration of BS is always able to

obtain better solutions in a much shorter time. As for the low time
configuration of THSB, it is typically faster than BS; however, the
resulting sequences are significantly worse than those obtained by
BS. More in detail, when compared with THSB (low time), BS (low
time) obtains an average improvement of 18.8% in terms of solution
quality. Moreover, BS (low time) improves the results obtained by
THBS (high quality) on average by 10.1%, while reducing the com-
putation time requirements by 96.3%. That is, BS (low time) needs,
on average, only 3.7% of the computation time required by THBS
(high quality). On the other hand, BS (high quality) improves the re-
sults of THBS (high quality) on average by 12.7% while requiring only
half of its computation time, that is, computation time is reduced
by 49.4%.

Finally, note that G&V is definitely the fastest of the compared
algorithms, specially for the largest instances, but at the cost of a
significant decrease in solution quality with respect to BS.

3.5. Experimental results for set ST

Shyu and Tsai [28] presented an ACO algorithm for the LCS prob-
lem. ACO [9] is a metaheuristic inspired by the foraging behaviour
of ant colonies. At the core of this behaviour is the indirect commu-
nication between the ants by means of chemical pheromone trails,
which enables them to find short paths between their nest and food
sources. This characteristic of real ant colonies is exploited in ACO
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Table 3
Comparison of BS with ACO for Random instances [28].
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Instance (Random) ACO S (low time) BS (high quality)

|12 n Il Time [t A (%) Time |t*] A (%) Time

4 10 197.2 (2.0) 10.7 (2.0) 200 14 03 211 7.0 9.8
15 185.2 (1.3) 15.7 (5.4) 190 2.6 0.5 194 4.8 13.2
20 176.2 (1.3) 11.4 (0.8) 178 1.0 0.7 184 4.4 14.9
25 17222 (0.7) 15.4 (1.7) 174 1.0 0.9 179 3.9 15.8
40 161.4 (1.3) 23.8 (10.3) 162 04 14 167 35 21.0
60 155.4 (1.3) 24.7 (3.2) 157 1.0 2.1 161 3.6 27.6
80 151.6 (0.8) 32.5 (5.9) 151 -0.4 2.7 156 29 335
100 148.8 (1.3) 43.6 (10.4) 150 0.8 3.5 154 3.5 40.3
150 143.4 (0.8) 57.2 (17.1) 146 1.8 5.0 148 3.2 56.4
200 141.0 (0.6) 59.1 (9.6) 144 2.1 6.9 146 3.5 74.3

20 10 54,0 (1.1) 74 (2.1) 58 7.4 0.7 61 13.0 333
15 462 (1.6) 9.3 (2.5) 49 6.1 0.9 51 104 37.6
20 424 (1.3) 11.4 (4.9) 43 14 1.1 47 10.8 39.5
25 400 (1.1) 10,5 (2.3) 41 25 13 43 75 395
40 34.2 (0.7) 14.1 (4.8) 37 8.2 1.7 37 8.2 432
60 30.6 (0.8) 17.3 (1.3) 34 11.1 2.6 34 11.1 46.5
80 29.0 (1.1) 22.9 (3.0) 32 103 3.2 32 103 53.2
100 28.4 (0.8) 25.6(0.1) 30 5.6 3.9 31 9.2 59.2
150 26.0 (0.4) 40.8 (7.4) 28 7.7 5.7 29 115 75.6
200 25.0 (0.2) 55.4 (4.7) 27 8.0 7.9 27 8.0 98.0

BS (low time): #,(), kpw =10, u=3 for |Z| =4; n,(), kpw =10, u=5 for |X| =

BS (high quality): #,(), kpw = 100, u=3 for |X|=4; n,(), kow =100, u=5 for [X] =20

Table 4

Comparison of BS with ACO for Rat instances [28].

Instance (Rat) ACO S (low time) S (high quality)

12 n |t Time 1t*| A (%) Time [t A (%) Time

4 10 182.0 (2.4) 7.4 (1.9) 189 3.8 0.3 191 49 9.7
15 166.6 (1.3) 10.5 (2.4) 163 2.2 0.4 173 3.8 123
20 160.0 (1.3) 12.5 (3.8) 160 0.0 0.6 163 1.9 12.6
25 155.8 (1.3) 15.9 (4.0) 160 2.7 0.8 162 4.0 15.8
40 143.4 (0.8) 21.0 (4.6) 142 -1.0 1.2 146 1.8 19.4
60 1424 (1.7) 26.2 (8.9) 143 0.4 1.9 144 1.1 26.7
80 128.8 (0.7) 29.9 (4.9) 131 1.7 23 135 4.8 31.8
100 124.6 (2.0) 48.8 (17.9) 129 3.5 3.0 132 5.9 38.5
150 115.6 (1.3) 35.0 (6.8) 120 3.8 4.2 121 4.7 51.1
200 114.6 (2.3) 65.5 (14.0) 117 2.1 5.6 121 5.6 69.1

20 10 63.4 (1.3) 92 (2.5) 65 25 0.7 69 8.8 274
15 56.6 (0.8) 8.9 (2.4) 57 0.7 1.1 60 6.0 36.7
20 47.8 (0.7) 14.6 ( 3) 50 46 12 51 6.7 344
25 462 (13) 115 (1.2) 49 6.1 14 51 10.4 39.0
40 442 (13) 14.6 ( 2) 46 41 2.0 49 10.9 474
60 43.0 (0.4) 31.5 (6.9) 44 2.3 32 46 7.0 60.3
80 39.6 (0.8) 324 (10.1) 42 6.1 4.0 43 8.6 64.4
100 37.0 (1.1) 424 (8.8) 37 0.0 45 38 2.7 64.8
150 34.0 (1.1) 49.1 (8.1) 35 2.9 6.7 36 5.9 77.8
200 324 (1.3) 75.7 (17.0) 31 —4.3 83 33 19 101.0

BS (low time): #,(), kpw =10, u=3 for || =4; n,(), kpw =10, u=5 for |X| =

BS (high quality): #,(), kpw = 100, u=3 for |X|=4; n,(), kew =100, u=>5 for [X| =

algorithms for solving, for example, discrete optimization problems. and p =5 for || = 20. We then compared the two configurations

In general, ACO attempts to solve an optimization problem by iterat-
ing the following two steps: (1) candidate solutions are constructed
using a pheromone model, that is, a parameterized probability dis-
tribution over the solution space; and (2) the candidate solutions are
used to modify the pheromone values in a way that is deemed to
bias future sampling towards high quality solutions.

First, we conducted tuning experiments with BS for the applica-
tion to benchmark set ST instroduced in [28]. According to these
results [5], we choose 7,(), kpw = 100, with u =3 for |2| =4 and
w=>5 for || = 20 for the high quality configuration of BS, whereas
the low time configuration uses #,(), kpw = 10, with u=3 for || =4

of BS with the results of ACO obtained from [28]. ACO has been
implemented in C + + and the experiments were run on a AMD
Athlon 2100+ CPU, which should be slightly faster than our machine.
Tables 3-5 show this comparison for Random, Rat and Virus in-
stances, respectively. In each table, the columns with heading |t*|
contain the solution quality and the columns with heading “Time”
present the computation time in seconds. Results for ACO show the
mean and, in parentheses, the standard deviation of 10 independent
runs for a single instance. Since BS is deterministic, and each result
shown is the one obtained for a single instance. Finally, the table
columns with heading A present the improvement (respectively, the



Table 5

Comparison of BS with ACO for Virus instances [28].
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Instance (Virus) ACO BS (low time) BS (high quality)
|12 n |t*] Time |t¥] A (%) Time |t*] A (%) Time
4 10 197.6 (1.3) 3.7 (0.7) 203 2.7 0.4 212 7.3 11.6
15 183.6 (1.3) 7.9 (2.0) 192 4.6 0.5 193 5.1 15.4
20 173.8 (2.5) 204 (6.5) 179 3.0 0.7 181 4.1 17.2
25 179.0 (1.8) 183 (5.3) 178 -0.6 0.9 185 34 17.9
40 155.0 (2.1) 20.5 (34) 158 1.9 13 162 4.5 219
60 150.6 (1.3) 30.8 (9.3) 153 1.6 2.0 158 49 29.1
80 145.8 (1.3) 45.5 (6.9) 148 1.5 2.6 153 4.9 36.0
100 143.4 (2.7) 23.8 (10.3) 149 39 34 150 4.6 439
150 141.6 (0.8) 50.0 (21.3) 143 1.0 5.0 148 45 64.5
200 140.6 (1.3) 65.6 (15.6) 143 1.7 6.8 145 31 84.5
20 10 65.6 (0.8) 3.5 (1.2) 67 2.1 0.7 75 14.3 27.2
15 55.8 (1.3) 104 (1.6) 58 3.9 1.0 63 12.9 38.6
20 53.6 (1.3) 10.8 (0.5) 55 2.6 1.2 57 6.3 403
25 49.6 (0.8) 13.2 (4.5) 50 0.8 14 53 6.9 389
40 46.4 (0.8) 17.1 (2.6) 47 13 2.1 49 5.6 48.4
60 43.4 (0.8) 27.7 (4.2) 44 14 31 45 3.7 56.1
80 43.0 (0.4) 38.1 (11.4) 43 0.0 4.0 44 2.3 67.4
100 42.0 (1.1) 234 (5.1) 41 -2.4 5.0 43 2.4 74.2
150 42.6 (0.8) 71.4 (19.8) 43 0.9 7.8 44 33 108.0
200 41.0 (0.2) 78.9 (21.7) 43 49 11.0 43 4.9 140.0

BS (low time): #,(), kow = 10, =3 for |X| =4; 1,(), kow = 10, u=5 for || =20.

BS (high quality): #,(), kpw = 100, u=3 for |X|=4; n,(), kow =100, u=5 for |X| = 20.

decrease in performance) of BS with respect to the results obtained
by ACO. This measure is given in % and is computed as (100-X/Y)—100,
where X is the result obtained by BS, and Y is the result of ACO.

For the instances with alphabet size |X| = 4, the low time con-
figuration of BS finds slightly better solutions than ACO in a much
shorter time, specially for large values of n. On the other hand, the
high quality configuration of BS clearly outperforms ACO with re-
spect to solution quality while it requires approximately the same
amount of computation time. As for alphabet size |2| = 20, BS (low
time) matches, and often improves over the solutions generated by
ACO, while requiring a small fraction of the computation time used
by ACO. However, in this case, BS (high quality) is clearly slower
than ACO. Nonetheless, BS (high quality) outperforms both ACO and
BS (low time). The difference is particularly large for instances with
few strings, that is, a small value of n. In summary, BS (low time)
obtains an average overall improvement of 2.6% in solution qual-
ity while reducing computation time by 90.3%. On the other hand,
BS (high quality) is able to improve the ACO results on average by
5.9% with the drawback of using about twice as much computation
time.

4. Conclusions

In this paper we proposed a beam search (BS) algorithm for the
LCS problem. The proposed BS was empirically tested on three dif-
ferent sets of LCS benchmark instances. As expected, the use of a
larger beam width improves the quality of the solutions obtained
by BS, although it also increases the computation time required to
reach a certain solution quality. Therefore, we selected for each set
of instances two configurations of parameters for BS. The first one
is characterized by low computation time requirements, while the
second one rather aims at producing high quality solution. These low
time and high quality configurations were compared against the best
approaches from the literature for the respective benchmark sets.
The results showed that BS outperforms the expansion algorithm as
well as the THSB heuristic in solution quality as well as in compu-
tation time requirements. As for the comparison to an ant colony
optimization (ACO) algorithm, the low time configuration of BS pro-
duces equally good solutions in a much shorter time, specially for

high number of strings, whereas the high quality configuration of BS
consistently finds better solutions than ACO at the cost of higher
running times.

In summary, our experimental analysis showed that the proposed
BS algorithm is currently a state-of-the-art method for solving the
LCS problem.
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