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Abstract. Many studies in the literature have applied multi-objective
evolutionary algorithms (MOEAs) to multi-objective combinatorial op-
timization problems. Few of them analyze the actual contribution of the
basic algorithmic components of MOEAs. These components include the
underlying EA structure, the fitness and diversity operators, and their
policy for maintaining the population. In this paper, we compare seven
MOEAs from the literature on three bi-objective and one tri-objective
variants of the permutation flowshop problem. The overall best and worst
performing MOEASs are then used for an iterative analysis, where each of
the main components of these algorithms is analyzed to determine their
contribution to the algorithms’ performance. Results confirm some pre-
vious knowledge on MOEAs, but also provide new insights. Concretely,
some components only work well when simultaneously used. Further-
more, a new best-performing algorithm was discovered for one of the
problem variants by replacing the diversity component of the best per-
forming algorithm (NSGA-II) with the diversity component from PAES.

1 Introduction

Evolutionary algorithms (EAs) are one of the most widely used metaheuristic
algorithms and since a long time attract a large research community. Even when
considering only applications to multi-objective optimization problems, many
different multi-objective EAs (MOEAs) have been proposed [1,3,6,9,11,19,20].
In fact, MOEAs were among the first metaheuristics applied to multi-objective
combinatorial optimization (MCOP) [16]. Moreover, several relevant develop-
ments in heuristic algorithms for multi-objective optimization have been ad-
vanced in the research efforts targeted to MOEAs. Such developments include
archiving [11], dominance-compliant performance measures [21] and the perfor-
mance assessment of multi-objective optimizers [22].

Despite the large number of MOEAs proposed in the literature, little ef-
fort has been put into understanding the actual impact of specific algorithmic
components. In general, the efficacy of MOEAs depends on a few main compo-
nents. The first, common to single-objective optimization, is the underlying EA
structure, which includes genetic algorithms (GA), evolutionary strategies (ES)
and differential evolution (DE). The other two components, fitness and diversity
operators, have been adapted from single-objective optimization to deal with



search aspects particular to multi-objective problems. In MOEAs, the fitness
operator typically considers the Pareto dominance relations between chromo-
somes in order to intensify the search. Conversely, the diversity operators focus
on spreading the solutions over the objective space in order to find a set of trade-
off solutions representative of various possible preferences. Finally, the policy for
the population management addresses the issue of which individuals to remove
after new ones have been generated by the evolutionary operators (one may call
this also population reduction policy). These policies make use of fitness and
diversity measures, but the frequency with which they are computed may differ
from algorithm to algorithm.

Traditionally, a new MOEA is proposed as a monolithic block that integrates
specific choices for the fitness, diversity, and population reduction. In this way,
it is difficult to understand the actual impact each of these components has on
performance. Often, algorithms that differ only by few such components have not
been compared directly. In this paper, we compare seven different MOEAs on
the permutation flowshop problem (PFSP) to understand their performance. We
consider the three most relevant objective functions used in the PFSP literature,
namely makespan, total flow time, and total tardiness. We then implement and
compare all MOEASs for the three possible bi-objective variants as well as for the
tri-objective variant.

While the performance of some algorithms is consistent across all PFSP vari-
ants, others present major differences. We then analyze on all variants, iteratively
moving from the worst to the best ranked algorithm in the configuration space
of MOEAs. This is done in a fashion akin to path relinking [10] by replacing
component by component in the worst performing algorithm until obtaining the
structure of the best performing one. Such a type of analysis has been proposed
recently by Fawcett and Hoos [8] in the context of automatic algorithm configu-
ration. The goal of our analysis is to identify the algorithm components that, for
a specific problem, contribute most to algorithm performance. The results of the
iterative analysis conducted show that some algorithms can be easily improved
by means of additional convergence pressure. Furthermore, for one of the PFSP
variants the best-performing algorithm can be improved by replacing its diversity
component with the component used by the worst-performing algorithm.

The paper is organized as follows. Section 2 presents the PFSP. Section 3
describes the algorithms we consider in this work, highlighting the differences
between them. The experimental setup is presented in Section 4. The comparison
of the MOEAs and the results of the analysis of MOEA components is presented
in Sections 5 and 6, respectively. Finally, conclusions and possibilities for future
work are discussed in Section 7.

2 The Permutation Flowshop Problem

The PFSP is one of the most widely studied scheduling problems in operations
research. It arises in various industries such as chemical, steel, or ceramic tile
production where jobs have to be executed by different machines in a given
order. Since each execution takes a different amount of time, the order in which
jobs are processed is of major importance for the efficiency of the process. An



instance of the PFSP consists of a set of n jobs and m machines and a matrix
P of n x m processing times p;;, where p;; is the processing time of job ¢ on
machine j. For a permutation 7 that represents the order in which jobs will be
executed, the completion times of all jobs on all machines are defined as

Croj =0, j=1..,m, Crio=0, i=1,..,nm, (1)

Cﬁ’j = maX{C’m_Lj,C’m,j_l}, 7 = 1, ceey T, ] = 1, ey (2)

where 7; is the job at position ¢ in the permutation, my is a dummy job, and
machine 0 is a dummy machine. Typically, the PFSP has been studied using
various objective functions, the most used being (i) makespan (Cpax), i-e., the
completion time of the last job on the last machine; (ii) total flow time (TFT),
i.e., the sum of the completion times of each job on the last machine; and (iii)
total tardiness (TT), the difference between the completion times of all jobs in
the last machine and their due dates. In the latter case, a list of due dates is
provided, where d; is the due date of job <.

When more than one of these objectives is considered simultaneously, solu-
tions are compared not based on a single objective value, but on an objective
vector. Given a PFSP variant with objectives f*,i = 1,...,k, a solution s is
said to be better (or to dominate) another solution s’ if Vi, fi(s) < f*(s’) and
Ji, fi(s) < f%(s’). If neither solution dominates the other, they are said to be
nondominated. A typical goal of optimizers designed to solve a multi-objective
problem is to find the set of nondominated solutions w.r.t. all feasible solutions,
the Pareto set. Since this may prove to be computationally unfeasible, multi-
objective metaheuristics have been used to find approximation sets, i.e., sets
whose image in the objective space (called approzimation fronts) best approxi-
mate the Pareto set image.

In this paper, we implement the MOEAs to solve the three possible
bi-objective variants that combine C,.x, TFT, and TT, namely C,.x-TFT,
Cimax-TT, and TFT-TT. Moreover, we also consider the tri-objective vari-
ant Cpax-TFT-TT. To ensure the algorithms efficacy, we use the same algo-
rithmic components typically found in the PFSP literature. Solutions are rep-
resented through direct encoding, that is, each individual in the MOEA is a
permutation of the jobs. Initial solutions are generated randomly as tradition-
ally done in MOEAs. The crossover operator applied is the two-point crossover
operator. Finally, two mutation operators are considered: insert, which selects a
job uniformly at random, and reinserts it in a position of the permutation that
is also chosen uniformly at random, and ezchange, which swaps two jobs of the
permutation that are also chosen uniformly at random.

3 Multi-objective evolutionary algorithms

Since the first proposal of a MOEA [16], several algorithmic structures and
components have been devised. To better understand the commonalities and
peculiarities of the most relevant approaches, we review various proposals here.
All MOEAs described below and used in this work are summarized in Table 1.



Table 1. Main algorithmic components of the MOEAs considered in this work. For an
explanation of the table entries we refer to the text.

algorithm fitness diversity reduction structure
MOGA [9] dominance rank niche sharing one shot GA
NSGA-II [6] dominance depth crowding distance one shot GA
SPEA2 [20] dominance strength k-NN iterative GA
IBEA [19] binary indicator none iterative GA
HypE [1] hypervolume contribution none iterative GA

PAES [11] none grid crowding one shot (1+1)-ES

SMS-EMOA [3] three-way fitness none steady-state (w+1)-ES

Many extensions of EAs to multi-objective optimization rely mostly on the
extension of the concepts of fitness and diversity. In a MOEA, the fitness of a
solution is generally calculated by means of dominance compliant metrics, mean-
ing the algorithm will favor solutions according to Pareto dominance. Several
fitness metrics can be found in the literature, such as dominance rank [9], dom-
inance strength [20], and dominance depth [1,6]. Besides fitness measures, the
population is also evaluated according to diversity metrics. In single-objective
optimization, diversity metrics are used to prevent the algorithm from stagnat-
ing by spreading individuals across the decision space. This concept becomes
even more important for multi-objective optimization since multiple solutions
need to be found. In this context, diversity is generally measured in terms of
the objective space, the main concern being to have a well-distributed approxi-
mation to the Pareto front. The most commonly used metrics include crowding
distance [6], niche sharing [17], and k-nearest-neighbor [20]. Finally, algorithms
also differ as to the frequency with which these values are calculated. One shot
algorithms compute fitness and diversity values once before population reduc-
tion and then discard the worst individuals. By contrast, iterative algorithms
re-calculate fitness and diversity values every time a solution is discarded from
the population. Although this second alternative is known to be computationally
more expensive, initial results have shown this strategy to produce better results
when runtime is not an issue [1].

The particular choice of fitness, diversity metrics and how often these are
computed are distinguishing features of different multi-objective EAs. The most
relevant algorithms propose their own fitness and diversity strategies. MOGA [9],
for instance, uses dominance ranking and niche sharing. The population reduc-
tion adopts the one shot policy. NSGA-II [6] uses dominance depth and crowding
distance, and also uses one shot population reduction. SPEA2 [20] uses a combi-
nation of dominance count and dominance rank for the fitness computation and
a k-NN metric for diversity, but discards individuals using an iterative reduction
policy. IBEA [19] uses binary quality indicators to compare solutions. The two
most commonly adopted are: (i) the e-indicator (I.), that computes the € value
that would have to be added (or multiplied) to one solution for it to be domi-
nated by another, and; (ii) the hypervolume difference (1), which given a pair
of solutions computes the volume of the subspace one individual dominates that
the other does not. These binary values are computed for each pair of solutions



in the population. The fitness of an individual is then equal to the aggregation
of its indicator w.r.t. the rest of the population.

More recently, the hypervolume indicator has been used to evaluate fitness
and diversity simultaneously during an MOEA run. In this case, it computes the
volume of the objective space dominated by a given approximation set, bounded
by a reference point. The hypervolume used as a fitness metric captures both
concepts of closeness to the Pareto front and spread of the approximation, thus
replacing the explicit diversity measure in other algorithms [1,19]. For example,
HypE [1] is a traditional genetic algorithm (GA) that uses the hypervolume
contribution, that is, the volume of the subspace dominated exclusively by a
given solution. HypE evaluates the fitness of the individuals at two moments:
(i) before mating, when all individuals are assessed, and; (ii) during population
reduction, when a speed-up is employed: the hypervolume contribution is used
as a tie-breaker for the dominance depth approach.

Several MOEAs are based on the structure of evolution strategies (ES).
PAES [11] is a (1+1)-ES that actually resembles a local search procedure. At
each iteration, an incumbent solution is mutated and compared to the popula-
tion of the algorithm, which maintains only nondominated solutions. The actual
efficiency of the algorithm lies in the adaptive procedure used to keep this popula-
tion well-spread and to direct the search towards regions that are little explored.
If the population size has not yet reached the maximum allowed size, the new
solution is accepted as long as it is not dominated by an existing solution. Oth-
erwise, the new solution is only accepted in the population if it either dominates
an existing solution or if it is located in a region of the objective space where
the algorithm still has not found many solutions.

Another multi-objective ES proposal is SMS-EMOA [3], a steady-state ES.
For mating selection, random individuals are uniformly chosen. This algorithm
resembles HypE regarding the population fitness metric, as SMS-EMOA also uses
dominance depth followed by hypervolume contribution for tie-breaking. Partic-
ularly, the combined fitness metric used by this algorithm can be described as
a three-way fitness metric. First, individuals are sorted according to dominance
depth. If all individuals in the population are given the same fitness value, the
hypervolume contribution is used to break ties. Otherwise, all fronts that fit the
new population are preserved, and tie-breaking (by means of the dominance rank
metric) is applied for the first front that does not fit fully into the population. As
SMS-EMOA is a steady-state algorithm, the offspring always replaces the worst
individual of the parent population, and the mating selection is always done at
random.

4 Experimental setup

We use the benchmark set provided by Taillard [18] following previous work
on multi-objective PFSP [7,15]. This benchmark set contains instances with all
combinations of n € {20, 50, 100,200} jobs and m € {5,10,20} machines, except
for n = 200 and m = 5 (200x5). We consider 10 instances of each size, 110
instances in total. The maximum runtime per instance equals ¢t = 0.1 - n -m
seconds. All experiments were run on a single core of Intel Xeon E5410 CPUs,



Table 2. Parameter space for tuning the MOEA parameters.

Parameter pop off pCc Pmut DX Algorithm IBEA MOGA PAES SPEA2
Domain {10, 20, 30 1 or [0,1 [0,1 [0,1] Parameter indicator  Oshare l k
50,80,100}  [0.1,2] Domain  {I,I;} [0.1,1] {1,2} {1,...,9}

running at 2.33GHz with 6MB of cache size under Cluster Rocks Linux version
6.0/CentOS 6.3.

The MOEAs used in this algorithm were instantiated using the C+4 Par-
adisEO framework [12]. We implemented several algorithmic components re-
quired for our study that were not available in ParadisEO. We also extended
ParadisEQO’s PFSP library to handle all PFSP variants considered in this paper.
The original MOEAs were not designed for the PFSP, and, hence, their param-
eter settings are likely not well suited for this problem. Therefore, we tuned the
parameter settings of all MOEAs using irace [2,13] with a tuning budget of 1000
experiments. As training instances during tuning, we used a different bench-
mark set [7] from the one used in the final analysis. irace was originally designed
for single-objective algorithms, but it has been extended to handle the multi-
objective case by using the hypervolume quality measure. For computing the
hypervolume, we normalize objective values in the range [1,2] and use (2.1,2.1)
as the reference point. The parameter space considered for all algorithms is the
same, depicted in Table 2, where pop is the population size, off is the number of
offspring, which can be either 1 or relative to the population size pop; pc is the
crossover probability, and; p,,.: is the mutation probability used for determining
if an individual will undergo mutation or not. If mutation is applied, a random
uniform flip selects between the exchange operator (if the random number is
below px) or the insertion operator (else). The additional parameters required
by specific algorithms are below the corresponding MOEA. To overcome known
archiving issues of some MOEAs, we add an unbounded external archive to all.

To compare the tuned MOEASs, we consider the average hypervolume over
10 runs of each algorithm per instance. We then plot parallel coordinate plots of
these results for each problem variant. Concretely, for each variant we produce
11 plots (one per instance size), each depicting the behavior of all MOEAs in
ten different instances. Due to space limitations, few representative results are
shown here. The complete set of results are made available as a supplementary
page [5]. Finally, to select the source and target algorithms for the ablation
analysis, we compute rank sums considering the average hypervolume of the 10
runs per instance size.

5 Comparison of MOEAs

The four variants of the PFSP considered in this paper differ significantly from
each other in the shape of the non-dominated reference fronts and the number
of non-dominated points [7]. As a consequence, both the parameters selected by
irace for the MOEAs and their performance may vary greatly from one variant
to another.

The parameters of the tuned MOEAs are shown in Table 3. Clearly, the
parameters of each MOEA vary a lot across the variants, with the exception



Table 3. Parameter settings chosen by irace for all MOEAs on Cmax-TFT. Column
Other refers to parameters specific to a given MOEA.

Cmax-TFT Cmax-TT
MOEA pop off PC Pmut DX Other MOEA pop off PC Pmut DX Other
HypE 30 91% 29% 78% 28% - HypE 30 88% 68% 100% 25% -
IBEA 30 96% 15% 91% 2% I. IBEA 30 109% 44% 9™% 1% I,
MOGA 50 160% 14% 67% 36% o =0.39 MOGA 30 121% 56% 86% 33% o=0.32
NSGA-II 20 123% 38% 90% 37% - NSGA-II 20 104% 25% 96% ™% -
PAES 10 - - - 7% =2 PAES 10 - - - 9% =2
SMS-EMOA 10 - 31% 76% 34% - SMS-EMOA 10 - 14%  93% 14% -
SPEA2 20 128% 20% 91% 31% k=3 SPEA2 10 128% 47% 86% 38% k=3
TFT-TT Cmax-TFT-TT
MOEA pop  off PC Pmut  PX Other MOEA pop  off PC Pmut  PX Other
HypE 100 179% 13% 100% 53% - HypE 50 158% 82% 96% 29% -
IBEA 30 157% 75% 96% 18% 1. IBEA 30 157% 51% 68% 44% 1.
MOGA 20 129% 23% 84% 48% o =38 MOGA 20 120% 69% 96% 36% o =0.81
NSGA-II 80 162% 62% 100% 41% - NSGA-II 50 171% 25% 79% 32% -
PAES 30 - - - 21% =2 PAES 10 - - - 19% =2
SMS-EMOA 10 31% 90% 34% - SMS-EMOA 10 1% 8% 40% -

SPEA2 20 49% 44% 8% 33% k=1 SPEA2 10 142% 53% 57% 31% k=6

Table 4. Rank sum analysis: The MOEAs are sorted according to their sum of ranks (in
parenthesis) for each MO-PFSP variant. Lower rank-sums indicate better performance.

Cmax-TFT NSGA-II IBEA  HypE  SPEA2 MOGA SMS-EMOA  PAES
(218) (365) (372) (427) (477) (508) (713)

Cmax-TT NSGA-II HypE  SPEA2 IBEA  MOGA SMS-EMOA  PAES
(284) (316) (350) (386) (411) (602) (731)

TFT-TT NSGA-II MOGA IBEA  SPEA2 SMS-EMOA HypE PAES

(252) (348) (400) (407) (469) (537) (664)

Cmax-TFT-TT NSCGA-II SPEA2 MOGA IBEA  SMS-EMOA HypE PAES
(176) (318) (339) (400) (584) (583) (680)

of population size, which is often small. Using small population sizes is ad-
vantageous to MOEAs in the presence of unbounded external archive for two
main reasons. First, by using a small population size the algorithm is able to
increase its convergence pressure. The second reason is related to minimizing
computational overheads. Traditionally, the highest computational costs during
one generation in a MOEA are due to (i) function evaluations, (ii) dominance
comparisons, and (iii) fitness/diversity metrics computation both in mating and
population reduction. The latter can be minimized by a reduced population size
and a higher number of offspring produced at each iteration. This way, the num-
ber of generations (and hence of fitness/diversity computations) is reduced, and
the algorithm is able to explore more potential solutions.

Next, we computed for each algorithm its rank sum. In particular, we ranked
the average hypervolume of each algorithm on each instance from one (best)
to seven (worst) and then summed the ranks of each algorithm across all 110
instances. The rank sums for all variants are given in Table 4. Two commonalities
can be identified across the variants: NSGA-II always presents the lowest rank
sums, whereas PAES always ranks worst. Given the heterogeneous nature of the
results, we then proceed to further discussion, one variant at a time.
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Fig. 1. Parallel coordinates plot of the average hypervolume for 10 instances of size
200x20 of Cmax-TFT. Each point on the x-axis represents the average hypervolume
obtained over 10 runs on a single instance.

5.1 Cmax-TFT

The parameters found by irace for each MOEA for Cmax-TFT (Table 3) follow
a pattern. As previously discussed, the population sizes are usually small and
the number of offspring is never smaller than 90% of pop, but is often higher
than 100%. Finally, the mutation rate p,,; is always very high and the insertion
operator is used much more frequently than the exchange one.

Figure 1 gives parallel coordinate plots for the average hypervolume (given
on the y-axis) measured on each of the 10 instances of size n = 200 and m = 20.
Clearly, the lines representing the performance of the MOEAs intertwine several
times, which shows variability across different instances. Nevertheless, the results
are consistent with the ranks depicted in Table 4: NSGA-II and IBEA are always
among the best performers, whereas PAES and SMS-EMOA are always among
the worst ones. Furthermore, the rank sum difference between IBEA and HypE

is too small for statistical significance, as well as the difference between MOGA
and SMS-EMOA.

5.2 Cmax-TT

The parameters selected by irace for the Cmax-TT variant (Table 3) do not dif-
fer much from those obtained above for the Cmax-TFT variant. If anything, the
tendencies observed for Cmax-TFT are reinforced: population sizes are smaller,
mutation probabilty now almost equals 100% and the exchange mutation oper-
ator is used even less often.

When assessing the performances via parallel coordinate plots, though, it
is clear in Fig. 2 that the results listed on Table 4 do not match exactly the
performance of the MOEAs in all instances. Particularly, for the largest instances
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Fig. 2. Parallel coordinates plot of the average hypervolume for 10 instances of size
200x20 of Cmax-TT. Each point on the x-axis represents the average hypervolume
obtained over 10 runs on a single instance.

it is clear that the MOEA with the best performance this time is SPEA2. Once
again, PAES and SMS-EMOA perform rather poorly. The fact that NSGA-II
presents a better rank sum than SPEA2 is due to its performance across the
whole benchmark.

5.3 TFT-TT

Compared to the parameters used for the two previous PFSP variants, the con-
figurations tuned for TFT-TT present two features worth highlighting. First, the
frequency of usage of the exchange operator has generally increased. Second, the
population maintained by the algorithms became much larger, and with the ex-
ception of SPEA2, so has the number of offspring created per generation. These
changes are probably due to the variation operators adopted in this work. Al-
though these are commonly used in the state-of-the-art of the PFSP, they have
been proposed for optimizing Cmax andmay lose efficiency for TFT or TT.

Concerning solution quality, Fig. 3 shows that NSGA-II performs well for this
variant. MOGA also performs well, and again PAES and SMS-EMOA are unable
to generate results to match the other MOEAs. When we consider the whole
benchmark, the algorithm that loses performance the most is HypE, although it
is able to perform almost as many function evaluations as NSGA-II.

54 Cmax-TFT-TT

The variant Cmax-TFT-TT is the only one comprising three objectives. It is
expected that the number of non-dominated solutions is much larger than in the
bi-objective variants. A practical consequence of this problem’s characteristic
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Fig. 3. Parallel coordinates plot of the average hypervolume for 10 instances of size
200x20 of TFT-TT. Each point on the x-axis represents the average hypervolume ob-
tained over 10 runs on a single instance.

is that the overhead caused by updating the external archives could slow the
algorithms down, allowing a smaller number of function evaluations. This way,
algorithms that converge faster to good solutions are likely to be favored, unless
they stagnate.

The analysis of the MOEAs’ performance on Fig. 4 shows that the tested
algorithms can be split in two distinct groups: (i) the best-performing ones,
comprised by NSGA-II, IBEA, and SPEA2, and; (ii) the worst-performing ones,
with PAES, HypE and SMS-EMOA. The rank sum analysis depicted in Ta-
ble 4 confirm the most of these observations, except for IBEA. Interestingly, the
hypervolume-based algorithms (HypE and SMS-EMOA) do not perform well,
even given their different underlying EA structure.

Among all algorithms, the biggest change observed is the low rank sum ob-
tained by NSGA-II. Given that 110 instances are considered for the rank sum
analysis, a rank sum of 176 for NSGA-II means that it was consistently the or
among the top-ranking algorithms. It is then clear that NSGA-II is a good choice
for a practitioner wanting to develop an application for the Cmax-TFT-TT.

6 Iterative analysis

The experiments in the previous section showed important differences in MOEA
performance in dependence of particular problems. In this section, we conduct
an iterative analysis to understand which algorithm components cause the main
differences between the best and worst performing MOEA variants, respectively
referred to as target and source. This analysis can be seen as a path relinking
in the configuration space and it has been applied in the context of automatic
algorithm configuration before by Fawcett and Hoos [8]. The main motivation
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Fig. 4. Parallel coordinates plot of the average hypervolume for 10 instances of size
200x20 of Cmax-TFT-TT. Each point on the x-axis represents the average hypervolume
obtained over 10 runs on a single instance.

for this analysis is to get insight into the contribution of specific components
on algorithm performance. We do so by generating intermediate configurations
between the two algorithms. At each step, we modify all individual algorithm
components in which the two algorithms differ, and follow the path that has the
maximum impact on performance. In this way, the analysis of the intermediate
configurations allows us to understand the actual contribution of the individual
components to the performance of the algorithm.

We conduct this iterative analysis on the four variants of the PFSP investi-
gated in this work. As source and target algorithms we respectively use PAES
and NSGA-II, the worst and best algorithms according to the rank sum analysis
for all variants. These algorithms differ in all components considered, providing
a rich set of intermediate configurations. Since the EA structure of PAES and
NSGA-II is very different, some clarifications are required. First, PAES does not
keep an internal population, but a bounded internal archive that can accept a
maximum of |pop| solutions. Therefore, a population reduction policy does not
make sense in PAES since a single solution is added at a time. Moreover, since
only one solution is considered for variation, the crossover operator can never be
applied. In this analysis, when switching from the structure used by PAES to
the structure used by NSGA-II, all these subcomponents are changed atomically,
namely (i) using a population instead of a bounded internal archive; (ii) produc-
ing off (or off - pop) individuals per generation, (iii) mating selection via binary
deterministic tournament (as in NSGA-II), and (iv) using the crossover operator.
Moreover, at this point the crossover and mutation probabilities selected by irace
for NSGA-II are used, since PAES did not originally present these parameters.

Apart from the underlying EA structural differences between the source and
target algorithms, we also consider the numerical parameters selected by irace as



a factor that could interfere with the performance of the algorithms. However,
since number of offspring, and crossover and mutation probabilities have already
been considered as part of the underlying EA structure component, this factor
comprises only the population size and the exchange mutation operator rate
(and, consequently, the insertion mutation operator rate).

The analysis conducted showed similar results for Cmax-TFT and Cmax-TFT-
TT, but very different results for the other problems. We hence group the dis-
cussion of the first two variants, and then individually analyze the other two.

6.1 Cmax-TFT and Cmax-TFT-TT

All intermediate configurations tested in the analysis of Cmax-TFT and Cmax-
TFT-TT are shown in Fig. 5 (top row). The y-axis represents the rank sums. The
x-axis contains the steps of the procedure. In step 0, only the source algorithm
is depicted, in this case PAES. In step 1, we modify the four components that
differ between PAES and NSGA-II, as previously explained, thus generating four
new algorithms.

As shown in Fig. 5 (top row), the component that leads to the strongest de-
crease of the rank sum is the fitness component. This is a rather intuitive result,
given that PAES does not have any component to enforce convergence other
than the dominance acceptance criterion of its internal archive. In step 2, we
have PAES using the fitness component from NSGA-II, and we test changing its
diversity component, its structure, and its numerical parameters, This time, the
underlying EA structure becomes the most important factor. At this point, this
result is rather expected since it is the component that represents the greater
change in the algorithm. Moreover, it also means the diversity component of
PAES is indeed effective when combined with dominance depth (or, more gen-
erally, with a fitness component). Step 3 modifies the diversity and numerical
components, starting from the best algorithm in step 2. Modifying the diversity
component now leads to a much better rank sum, almost matching the target
algorithm.

6.2 Cmax-TT

All intermediate configurations tested for this variant are shown in Fig. 5 (bot-
tom left). Again, the best-improving changes in steps 1 and 2 are, respectively,
the addition of a fitness component to PAES and changing its structure to a
traditional GA. At step 3, surprisingly, none of the intermediate configurations
achieve a better rank sum than the configuration selected in step 2. This means
that, for this variant, one needs to change both the diversity metric and the
numerical parameters at once to reach the final performance of NSGA-II. This
could likely be explained by the additional parameter used by PAES that reg-
ulates the size of the its grid cells: their sizes may suit the original internal
archive/population size of PAES, but not the one from NSGA-II.

6.3 TFT-TT

Finally, all intermediate configurations tested for the TFT-TT variant are shown
in Fig. 5 (bottom right). As for the previous variants, once again the best-
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Fig. 5. Intermediate configurations tested for Cmax-TFT (top left), Cmax-TFT-TT (top
right), Cmax-TT (bottom left), and TFT-TT (bottom right). The line connects the
changes that caused the largest performance improvement.

improving change in step 1 is the addition of a fitness component. At step 2, no
improvements can be devised, although a change in the numerical parameters
does not affect the algorithm significantly. Most interestingly, at step 3 the con-
figuration obtained by changing the structure of the best configuration from step
2 achieves rank sums even lower than those obtained by the target algorithm,
NSGA-II. The only difference between the algorithm at step 3 and NSGA-II is
the diversity measure. This means that, by simply replacing the diversity metric
used by NSGA-II with the one used by PAES, one can devise a better perform-
ing algorithm for this problem variant. It is also interesting that this variant
was the only one where such a better performing configuration was found, thus
reinforcing the idea that it presents peculiar characteristics.

7 Conclusions and Future work

Traditionally, MOEAs have been seen as monolithic blocks, which is reflected
by the fact that many of these algorithms have been proposed and analyzed as



such. However, for a more detailed analysis it is often preferable to decompose
the algorithms into building blocks or, say, main algorithm components. In this
paper, we have followed this direction and deconstructed MOEASs into four main
components. These components are the underlying EA algorithm, the fitness
and diversity operators, and the population management policy. We believe that
analyzing these components and their contributions to performance is key to
understanding which MOEA works best on each problem and to develop better
MOEAs in the future.

In this work, we deconstructed seven relevant MOEAs, namely HypE, IBEA,
MOGA, NSGA-II, PAES, SMS-EMOA, and SPEA2. We compared them on three
bi-objective and one tri-objective variants of the permutation flowshop problem
(PFSP). The results are strongly variant and also problem dependent, high-
lighting particular strengths and weaknesses of each MOEA. Overall, NSGA-II
is always able to find good approximation sets. Maybe surprisingly, some algo-
rithms such as HypE are sometimes among the best for some problem variant
while they perform poorly for other problem variants. Furthermore, we conduct
an iterative analysis interpolating between the best and worst performing algo-
rithms for all PFSP variants. We show that, sometimes, algorithms can be easily
improved by changing a single component, leading to a significant improvement
in their performance.

The conclusions drawn from this work confirm the great performance variabil-
ity metaheuristics generally present for combinatorial optimization problems. As
said, the best and worst performing MOEAs can be easily improved by replacing
single components. This fact also motivates the need for a flexible, component-
wise implementation of MOEASs, as well as the specialization of MOEAs to spe-
cific problems through automatic algorithm configuration. Initial results on flex-
ible, configurable frameworks for other multi-objective search techniques have
shown that this is a very promising path for research [4,14].
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