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Abstract—The goal of multiobjective optimization is to find
a set of best compromise solutions for typically conflicting
objectives. Due to the complex nature of most real-life prob-
lems, only an approximation to such an optimal set can be
obtained within reasonable (computing) time. To compare such
approximations, and thereby the performance of multiobjective
optimizers providing them, unary quality measures are usually
applied. Among these, the hypervolume indicator (or S-metric) is
of particular relevance due to its favorable properties. Moreover,
this indicator has been successfully integrated into stochastic
optimizers, such as evolutionary algorithms, where it serves as a
guidance criterion for finding good approximations to the Pareto
front. Recent results show that computing the hypervolume
indicator can be seen as solving a specialized version of Klee’s
Measure Problem. In general, Klee’s Measure Problem can be
solved with O(nlogn + nd/2 logn) comparisons for an input
instance of size n in d dimensions; as of this writing, it is
unknown whether a lower bound higher than Q(nlogn) can
be proven. In this paper, we derive a lower bound of Q(nlogn)
for the complexity of computing the hypervolume indicator in
any number of dimensions d > 1 by reducing the so-called
UNIFORMGAP problem to it. For the 3-D case, we also present a
matching upper bound of O(n log n) comparisons that is obtained
by extending an algorithm for finding the maxima of a point set.

Index Terms— Complexity analysis, computational geometry,
multiobjective optimization, performance assessment.

I. MOTIVATION AND INTRODUCTION TO
MULTIOBJECTIVE OPTIMIZATION

N MULTIOBJECTIVE optimization, the problem is to
find best possible compromise solutions which cannot be
improved according to one objective without deteriorating the
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others. This type of problem arises in all kind of industrial
application areas ranging from production to service industries,
entertainment, and many others. However, since many real-
world problems cannot be expected to be solved to optimality
(whether at all or within a reasonable amount of computing
time), the goal is usually to obtain a good approximation to the
optimal set of solutions within a reasonable amount of time.
With this aim, many stochastic optimizers, such as multiobjec-
tive evolutionary algorithms [1], [2], have been proposed in the
literature. To evaluate and compare the (sets of) compromise
solutions suggested by these optimizers, quality indicators
have been developed. Of major importance among these is
the hypervolume indicator whose computational complexity is
analyzed in this paper.

Without loss of generality, we consider maximization prob-
lems. A multiobjective optimization problem consists of d
objective functions fi, ..., f4, which map an m-dimensional
vector in the search space onto a d-dimensional vector in the
objective space. Among all such d-dimensional objective vec-
tors, a strict partial order can be defined as follows: a point p =
(p1, - - -, pa) dominates a point q iff g; < p; holds for all 1 <
i <d (i.e.,q X p) and q # p. Two distinct points are incompa-
rable iff neither point dominates the other. Points that are not
dominated within a set are the best ones, and are referred to as
non-dominated or maximal. The elements of the search space
that generate the non-dominated elements of the objective
space form the Pareto set of the problem, and the set of the cor-
responding images in the objective space is called Pareto front.

Multiobjective optimizers generate approximations of the
Pareto front. To assess the performance of different optimizers,
their resulting approximations have to be compared. This may
be performed by extending the Pareto dominance relation to
sets of points (see e.g., Zitzler et al. [3]), but, in this case, good
Pareto front approximations are often incomparable to one
another. Therefore, many researchers have proposed quality
indicators for the sets of compromise solutions generated by
multiobjective optimizers that—according to several quality
criteria—map such sets onto scalar values and thus allow for
an easy comparison.

There is a general consensus about two (informal) criteria of
quality: An approximation of the optimal set is good if 1) its
points are “close” to the Pareto front; 2) the points are “well-
distributed” along the whole Pareto front. Additionally, we find
it worth mentioning that a good approximation shall contain
“many” non-dominated points. An in-depth overview of qual-
ity measures and their properties is given by Zitzler et al. [3].

1089-778X/$26.00 © 2009 IEEE
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Fig. 1. Set of points in the positive quadrant and the corresponding hole-free
orthogonal polytope with the origin as the reference point. Maximal points
are depicted black, non-maximal gray.

The hypervolume indicator (or S-metric, Lebesgue mea-
sure), introduced by Zitzler and Thiele [4], is regarded as a
rather fair measure since it respects all the aspects mentioned
above and has favorable theoretical properties [3], giving it
an outstanding importance among quality indicators. Formally,
the hypervolume indicator may be defined as follows:

Definition 1: Given a finite set P of points in the positive
orthant R‘io, the hypervolume indicator is defined as the
d-dimensional volume of the hole-free orthogonal polytope

1'[d={xeR‘éo:xjpforsomepeP}.

This polytope corresponds to the space which is dominated by
at least one point in the set P.

The dominated hypervolume is calculated with respect to a
reference point r which, in the above definition, is chosen to
coincide with the origin. This definition also assumes maxi-
mization of all objectives and strictly positive objective values.
Whenever this is not the case, suitable affine transformations
may be applied to each objective separately.

Fig. 1 shows an example of such a polytope in two dimen-
sions; the hypervolume indicator consists of the area of the
shaded region. Note that the point depicted in light gray does
not contribute to this area, as it is not a maximal element of P.
Since non-maximal (or dominated) points do not contribute
to the value of the indicator, the set P is often assumed
to coincide with the set of its maxima (or non-dominated
elements).

Due to its properties, the hypervolume indicator has been
applied in various empirical comparative studies. In addition,
it has been used as a criterion for selecting non-dominated
solutions for a size-limited archive [5], and has been in-
tegrated into multiobjective optimizers—mainly evolutionary
multiobjective optimization algorithms (EMOA) [6]-[8]—as a
single-objective substitute function to guide the optimization
process. When the indicator is applied to update an archive,
and especially when it is used within the selection operator
of an EMOA, its calculation has to be performed several
times per iteration. Thus, fast computation of the hypervolume
indicator is essential for modern EMOA, and its computational
complexity is currently an important research problem in the
evolutionary multiobjective optimization field.

With the growing interest in the computation of the hy-
pervolume indicator in the last few years, upper bounds
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on its asymptotic performance have been devised [9]-[16].
In this paper, a lower bound of Q(nlogn) comparisons
for the computation of the hypervolume indicator in any
number of dimensions d > 1 is proven by reduction from
the UNIFORMGAP problem. In addition, an O(nlogn) time
algorithm for the 3-D case is described. The combination of
these results shows that the lower bound is tight for d = 3,
and that the algorithm proposed is optimal.

In the following section, an upper bound is derived by
considering the hypervolume indicator as a special case of
Klee’s Measure Problem. Section III presents the new lower
bound and Section IV contains the description of an optimal
algorithm for computing the hypervolume indicator in three
dimensions. Concluding remarks are given in Section V.

II. UPPER BOUND WITH KLEE’S MEASURE PROBLEM

Klee’s Measure Problem, or the problem of computing the
length of the union of a collection of intervals on the real line,
was formulated by Klee, who also showed that it can be solved
in optimal O(nlogn) time [17]. Bentley [18] generalized
this problem to d > 2 dimensions, and presented an upper
bound of O(n?~!logn). Later, van Leeuwen and Wood [19]
improved this result to O(n?~!) when d > 3. The fastest
known algorithm to date for three or more dimensions is due
to Overmars and Yap [20], and runs in O(n¢/?logn) time.
The d-dimensional version of Klee’s Measure Problem is also
known as the problem of computing the measure of a union
of hyper-rectangles [21, Sec. 8.4].

Fonseca et al. [14] and Beume [15] independently described
the dominated hypervolume for a point set P C R‘io as a
special case of Klee’s Measure Problem. Indeed, the polytope
14 is patterned by the collection of hyper-rectangles {Rp}pepr
with Rp = {x € R‘io : X = p} spanned by the points
in P and the reference point r = 0 IR‘iO. This set of
hyper-rectangles is a valid input for Klee’s Measure Problem
and the corresponding output is the desired hypervolume (see
Fig. 2 for an example in R?). This immediately establishes
an upper bound of O(nlogn + n¢/?logn) time, which is
lower than the time complexity of various algorithms [11]-[13]
proposed previously for the computation of the hypervolume
indicator when d > 3 (the n log n term accounts for the special
cases where d < 2). By simplifying Overmars and Yap’s
algorithm to take advantage of the fact that all rectangles are
anchored at the same point (the reference point r), Beume and
Rudolph [16] obtained an upper bound of O(nlogn + n¢/?),
which is the best upper bound currently known for d > 3.

III. LOWER BOUND WITH THE UNIFORMGAP PROBLEM

It seems natural that the computation of the hypervolume
indicator may actually be easier than the general form of
Klee’s Measure Problem, since all rectangles are anchored
at the same point, namely the reference point. In particu-
lar, the hypervolume indicator does not include the disjoint-
interval case used by Fredman and Weide [22] to obtain
a lower bound of Q(nlogn) for Klee’s Measure Problem.
When d = 1, computing the hypervolume indicator requires
only n — 1 € O(n) comparisons, since this is equivalent
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Fig. 2. Hypervolume indicator as a special case of Klee’s Measure Problem.
The dominated hypervolume of the points is divided into rectangles spanned
by a point and the reference point r.

to determining the single maximal element of P. However,
Theorem 1 shows that the case d = 1 is the only case where
the (known) lower bounds for Klee’s Measure Problem and
for the problem of computing the dominated hypervolume, the
so-called DOMINATEDHYPERVOLUME problem are different.

Theorem 1: Solving the DOMINATEDHYPERVOLUME
problem for an n-element point set in Rd, d > 2, has a
time-complexity of Q(nlogn).

In the next sections, we first explain the method used to
derive this lower bound, and then we use this method to
provide a proof for Theorem 1.

A. Methods for Deriving Lower Bounds

The model of computation we are working in, the fixed-
degree algebraic decision tree, is the standard model used in
computational geometry (and algorithmic complexity) and is
used to prove lower bounds for (geometric) decision problems.
In a nutshell, an algebraic decision tree captures the behavior
of a (loop-unrolled) algorithm that branches depending on
the outcome of evaluations of bounded-degree polynomials.
A lower bound on the complexity of a given problem can then
be derived by establishing a lower bound on the depth of any
such tree resembling any valid algorithm to solve this problem.
This model is a generalization of the tree-based model used
to establish an Q(nlogn) lower bound for comparison-based
sorting (as discussed by, e.g., Cormen et al. [23, Sec. 8.1]). For
a more in-depth exposition, we refer the reader to the textbook
by Preparata and Shamos [21, Sec. 1.4].

Once a lower bound for some problem PROBLEMA has
been established, a lower bound for a problem PROB-
LEMB can be derived from PROBLEMA’s lower bound
if we can prove that PROBLEMB can be used to solve
any problem instance of PROBLEMA, or that PROBLEMA
can be reduced to PROBLEMB, as illustrated in Fig. 3.
More precisely, we need to establish a transformation 7
dom(PROBLEMA) — dom(PROBLEMB) and a transformation
v/ : im(PROBLEMB) — im(PROBLEMA) where dom(-)
denotes the set of all input instances and im(-) denotes the set
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of solutions to the given problem. Transformation 7 is used
to transform any input instance A for problem PROBLEMA
into an input instance 7(A) for problem PROBLEMB, and
transformation 7’ is used to transform the result (of solving)
PROBLEMB(7 (A)) into a valid solution for PROBLEMA.

For the correctness of the transformation we
require that for any problem instance .4, we have
PROBLEMA(A) = 1/(PROBLEMB(z(A))), i.e., the result

PROBLEMA(A) obtained by running any algorithm for
directly solving PROBLEMA for A has to be exactly
the same as the solution that is obtained via the above
transformation. To be able to obtain a meaningful lower
bound for PROBLEMB, we also require that the asymptotic
complexity g(n) of both 7z and 7’ is strictly less than the
lower bound for PROBLEMA (here, n is the input size). If
this is the case, we can conclude that the lower bound for
PROBLEMA is a lower bound for PROBLEMB as well—for
more details, we again refer the reader to Preparata and
Shamos [21, Sec. 1.4].

If g(n) € O(n) the above transformation is called a linear-
time reduction from PROBLEMA to PROBLEMB.

B. Proof for Theorem 1

Proof: Based upon the approach presented in the previous
subsection, the lower bound for the DOMINATEDH YPERVOL-
UME problem is established by a linear-time reduction from
the UNIFORMGAP problem. The latter problem is to decide
for a given n-element point set on the real line whether the
points are uniformly spaced, and has been shown to exhibit an
Q(nlogn) lower bound—see, e.g., Preparata and Shamos [21,
Sec. 6.4]. To prove the claimed lower bound for DOMINAT-
EDHYPERVOLUME, we need to establish that every problem
instance of UNIFORMGAP can be transformed (in linear time)
into an instance of DOMINATEDHYPERVOLUME and that the
result of solving the DOMINATEDH YPERVOLUME problem for
this particular instance can be used to obtain the correct answer
for UNIFORMGAP problem for the given input instance.

Let P := {x®, ..., x®} be any (unordered) set of points
on the real line. To solve UNIFORMGAP(P), we first con-
struct a set P’ of 2-D points from P using the embedding
p®D — (O, —x®) In linear time, we then translate the
embedded point set such that all points have strictly positive
coordinates. More precisely, we compute m := (— min{p; |
peP}t+6, —min{py | pe P}+0), where 6 > 0 is a
small positive constant, and let Q be the Minkowski sum of
P’ and {m}. All points of Q lie on a diagonal line in the first
quadrant (Fig. 4, top). We now run any algorithm for solving
the DOMINATEDHYPERVOLUME(Q, r) with the origin as the
reference point r and obtain some real number a that gives
the area of the dominated hypervolume.

To obtain the answer for UNIFORMGAP(P), we first
observe that the volume a of the dominated area can be
written as the sum a = aj + a» + a3 of the volumes of three
disjoint subareas (Fig. 4, top). The volumes of two of these
areas are independent of whether or not the points in P are
equally spaced. More precisely, we have a; = prlnin . pg‘in

and a; = (p"™* — p‘I“i“) - py™, where p™in is the point with
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Fig. 4.  Top: Partitioning of the dominated hypervolume in three parts.
Bottom: Three consecutive points that are not equally distributed. The dark
gray area is maximal in case p’ lies in the middle of p and p” and spans a
square.

minimal first coordinate and p™®* is the point with maximal

one. Both p™™ and p™* can be determined from P in linear
time.
Lemma 1: In the situation of Fig. 4 (top), the area as is
maximal if and only if the points in P are equally spaced.
Proof: Let us assume that a3z is maximal but that not
all points in P are equally spaced. Then there exist three
points p, p’, and p” in Q that are consecutive in sorted xi-
order such that |p} — p,| # |p] — pjl| (note that for the
purpose of this proof we do not need to actually find these
points; it is sufficient to know that they exist). Without loss of
generality, we have the situation depicted in Fig. 4 (bottom).
The contribution of the point p’ then is the area of the dark
rectangle, or |p] — p,| - |p5 — p5l. Since p, p’, and p” lie on
a line, the sum |p| — p,| + |p5 — p5| and thus the perimeter
of the dark rectangle is constant. For a given perimeter, a
rectangle has maximal area if and only if it is a square. Thus,
we can move p’ such that |p} — p,| = |p) — pj|, i.e., make
p, P/, and p” equally spaced, while increasing the area as.
This is the desired contradiction. Conversely, we see that for

_— - —
———— ——— ——

—”
-_——

input instance
for PROBLEMB

Transferring a lower bound by reduction from PROBLEMA to PROBLEMB.

an equally spaced set of points, every three consecutive points
are equally spaced, so the local contribution of each point is
a square. Again, trying to make any three consecutive points
non-equally spaced results in a decrease of the contribution of
the middle point and the claim follows.! |

Continuing the proof of Theorem 1, Lemma 1 is used to
provide the information needed to convert the answer for
DOMINATEDHYPERVOLUME(Q) into an answer for UNIFOR-
MGAP(P). To this end, we compute the hypervolume a that
the points in Q would dominate if they were equally spaced
for some inter-point distance ¢. Since the points p™™ and p™
already have been found in linear time, we can immediately
compute ¢ := (p"™* — pﬂni“) /(n — 1). Furthermore, we have
a = a; + ay + a3z (note that a; and ap are independent of
whether or not the points are equally spaced) where a3 =
1/2((p™ = p‘lnin)2 - (p™ = p‘lni“)2/(n —1)). The formula
for as is easily verified to give the area of the isosceles right
triangle spanned by p™*, p™, and (pﬁni“, py™*) minus (n—1)
times the area of an isosceles right triangle with leg-length €.

To obtain the answer for UNIFORMGAP(P), we simply
check whether the hypervolume a reported by DOMINATED-
HYPERVOLUME(Q) is strictly smaller than a. If so, we know
that a3 < a3, and thus, by Lemma 1, the points are not equally
spaced. Consequently, the points are equally spaced if and only
if a =a.

Since both the transformation of the input and the trans-
formation of the output of DOMINATEDHYPERVOLUME(Q)
take linear time and since the algorithm given above solves
the UNIFORMGAP problem for P, we have established the
claimed lower bound for the DOMINATEDHYPERVOLUME
problem. By embedding a 2-D point set into higher dimen-
sional space (setting each coordinate of higher dimensions to
1), we have also derived a lower bound for any dimension
d> 2. u

IV. AN OPTIMAL ALGORITHM FOR
THE 3-D CASE

In Theorem 1, a set of maximal (or non-dominated) points
was constructed to prove the lower bound. This shows that
even the knowledge that a particular input instance contains
only non-dominated points does not help to accelerate the
computation of the hypervolume indicator. On the other hand,

lAn alternative proof may be constructed based on purely analytical
arguments [24].
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Fig. 5.
each transition between two sub-problem involves updating a 2-D boundary.

the fact that dominated points do not contribute to the value
of dominated hypervolume suggests that identifying them may
be useful, if not necessary, in order to compute the indicator.
Therefore, an algorithm for the maxima problem would seem
to be a good starting point for the development of an algorithm
for computing the hypervolume indicator.

In this section, we present an algorithm for the problem
of computing the hypervolume indicator for a point set P C
R3, and the time complexity of this algorithm is analyzed to
match the lower bound given by Theorem 1. Without loss of
generality, we assume that all points have positive coordinates
in all dimensions.

A. Description of the General Approach

The algorithm is a rather natural extension of Kung et al.’s
algorithm for computing the set of maxima in three dimen-
sions [25]. We recall that a point is maximal if and only if no
other point has at least as large a coordinate in each dimension
with one coordinate being strictly larger (cf. Section I). This
implies that processing the points in decreasing order with
respect to the dth dimension reduces the (static) d-dimensional
problem to a sequence of (d — 1)-dimensional sub-problems.?

This property makes the problem amenable to a space-
sweep-based solution. Sweeping is a well-known paradigm in
computational geometry: the d-dimensional problem instance
is swept over with a (d —1)-dimensional hyperplane that moves
along one coordinate axis. The hyperplane stops at a finite
number of positions, usually defined by the objects in the
problem instance, computes a solution to a properly defined
(d — 1)-dimensional sub-problem, and finally combines the
solutions to the sub-problems into a solution for the global

2Depc:nding on the application at hand, the input set may contain duplicates
which do not dominate each other by definition. The algorithm presented in
this paper does not depend on all coordinate values being distinct, and, as
such, handles duplicates transparently.
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Computing the dominated hypervolume by sweeping in decreasing x3 order. (Left) The dominated hypervolume is partitioned into slices and (right)

problem. The main issue (besides properly defining the sub-
problems) is to efficiently maintain the objects relevant to the
current sub-problem; usually they are maintained in a dynamic
data structure, called the sweep structure.

For the case of computing a dominated hypervolume in
three dimensions, the sub-problems are given by hyperplanes
parallel to the (x1, xp) plane. These hyperplanes partition the
dominated hypervolume into slices that are extruded rectilinear
polygons—see Fig. 5, left. Restated in terms of dominated
hypervolumes, the algorithm of Kung et al. is a space-sweep
algorithm that processes the (3-D) points in decreasing x3
order (i.e., by decreasing x3 coordinate) and keeps track of
the (x1,x2) projection of the boundary of the dominated
hypervolume above the sweeping plane—see Fig. 5, right. This
boundary is a monotone rectilinear polyline (monotonically
increasing in x| direction and monotonically decreasing in x»
direction) and thus the points can be maintained efficiently in
increasing xj order by using a balanced binary search tree T
as the sweep structure.

On a high level, the proposed algorithm works as follows:
Whenever the sweeping hyperplane encounters a point p, the
projection of this point is inserted into 7'. Since the projection
of p can dominate the projection of other points inserted before
(see Fig. 5, right), the algorithm has to scan the data structure
from the insertion point to find (and remove) all dominated
projections. Finally, the (2-D) area A of the slice starting at
x3 = p3 has to be computed. When the sweeping hyperplane
encounters the next point q, the volume of this slice can be
computed by A - (p3 — ¢g3) (note that the algorithm sweeps
downward), and this value is added to the global volume
computed so far.

B. Detailed Description

To simplify the description, we also add two dummy points
(0,00) and (00,0) to T. Since all points p € P have
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Algorithm 1: Algorithm for computing the hypervolume V dominated by a set of n points in R3.

1) (Initialize the algorithm) Sort the points in decreasing x3 order and let (p(!, ..., p™) be the resulting sequence of
points. Initialize the search structure T by inserting two sentinel elements (co, 0) and (0, co) and set the volume V

computed so far to 0.

2) (Process the first point) Store p(l) in T and set the area A of the cross-section of the dominated hypervolume and the
sweeping plane to (pgl) . pgl)). Set z, the lowest maximal point in the x3 order seen so far, to p(!).

3) (Process all other points) Process p@ to p® in decreasing x3 order. For each point p® do the following:

a) Search T to find the point q that is immediately right of p® (next higher x| value), i.e., q := succi(p?).

b) If p@ is not dominated by q (i.e. if g2 < pg)), update T and the variables A, V, and z as follows:

i) (Update V) Since p®) is maximal, increase V by the volume of the slice between z (the last maximal point
seen so far) and p@, e, set V=V + A-(z3 — pgl)).

ii) (Update z) Set z to p*¥.

iii) (Process points dominated by p®) Starting from pred;(q), search backwards in T until the first point t in T
with tp > pg), ie., t= succz(p(i)), is found (see Fig. 6, bottom).

For each point s with s < pg)

at which this search stops do the following:

A) (Update A) Decrease A by the relative contribution of s, i.e., set A := A — (s1 — (pred(s))1) - (52 — q2)

(the dark rectangles in Fig. 6, bottom).

B) (Update T) Since s is dominated by p([), remove s from 7.

iv) (Update A) Increase A by the relative contribution of p(i), ie.,set A=A+ (p

rectangle in Fig. 6, bottom).

D — 1) (pY) = g2) (the light

v) (Update T) Since p(i) is maximal, store p(i) inT.

4) (Computing the volume dominated by the last maximal point) Increase V by the volume of the slice between the last
maximal point z and the (x1, xp) plane, i.e., set V:=V + A - z3.

positive (yet finite) coordinates, this ensures that each such
point p inserted into 7 will have a successor succ;(p) and a
predecessor pred;(p) in T with respect to the increasing order
on the x| coordinate.

A description of our algorithm is given as Algorithm 1.
Let us assume that the (xq, xp) projection of the boundary
of the dominated hypervolume above the sweeping plane is
maintained using a binary search tree 7" on the x| coordinates.

The algorithm then processes the next point p) (in decreas-
ing x3 order) by first locating the successor q := succ; (p?)
of pin T (Step 3a). If the x» coordinate of q is larger than the
xp coordinate of p(i), q dominates p(i ) in all dimensions, and
nothing needs to be done (see the point p’ in Fig. 6, top). If,
on the other hand, the x; coordinate of q is smaller than the x,
coordinate of p), p@ is added to the set of maximal points
(see the point p in Fig. 6, top). This update also affects the
boundary of the dominated hypervolume, and the algorithm
reflects this update by deleting all points between succa(p®)
and q (= succ; (p®)) (Step 3b, iii). The point succy(p®) can
be found by going backwards in 7 from q and exploiting the
fact that the x| order of the points in 7 corresponds to their
reverse x, order (see Fig. 6, bottom).

Our algorithm augments the above approach by simulta-
neously maintaining the volume V of the dominated hyper-
volume seen so far. To do so, the algorithm maintains the

area A in the (x1, xp) projection that is dominated by the points
currently stored in 7 and the last point z added to 7. Whenever
a new point p) is identified as a non-dominated point, the
dominated volume seen so far is increased by A - (z3 — pgl))
(Step 3b, i), and z is updated to p(i) (Step 3b, ii). Then, A is
updated to reflect the changed boundary stored in T (Step 3b,
iii + iv). At the end of the algorithm, we have to add the
volume of the slice between the last maximal point and the
(x1, x2) plane, i.e., the volume (A - z3) (see Step 4).

C. Analysis

The efficiency of the proposed algorithm depends on the
efficiency of the implementation of the sweep structure 7. If
we implement 7 using a balanced binary search tree, e.g.,
a red-black tree or an AVL-tree [23, Sec. 13], the cost for a
single update or search operation including pred and succ is
logarithmic in the number of elements currently stored in 7.
Since each point is added to 7' at most once, 7' cannot contain
more than n elements, and thus the cost for each update or
search operation is in O(logn).

The cost of updating A (see Step 3b, iii-A and 3b, iv)
is linear in the number of updates to T, since all relevant
volumes can be computed in constant time relative to
(sucea (p®)y, succi (p)2)—see Fig. 6, bottom.
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_L'
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succy(p')
e p’
-T succy(p)
X1
X2
_T_“ succ,(p)
p
@ siccy(p)
X1

Fig. 6. (x1, xp) projection of the intersection of the dominated hypervolume
and the sweepline. (Top) Classifying the next point during the sweep and
(bottom) updating the projection and the area of the intersection.

The running time of the algorithm now is easily seen to be
in O(nlogn), since each point can be added to (and removed
from) T at most once. All updates to 7" have logarithmic cost
and each associated update to A and to V can be done in
constant time per point. Thus, the global cost of all updates
and of the initial sorting step is O(nlogn), which proves
Theorem 2.

Theorem 2: Computing the hypervolume dominated by a
set of n points in R can be done in optimal O(nlogn) time.

The presented algorithm can be generalized to higher
dimensions resulting in an upper bound of O (n?~2logn) for
d > 2 (see Fonseca et al. [14]), though, for d > 4, a better
bound can be obtained using the algorithm by Beume and
Rudolph [16] with currently lowest worst case complexity.

V. CONCLUDING REMARKS

The efficient computation of the hypervolume indicator (or
S-metric) is of particular relevance, especially for its online
application within multiobjective optimizers.

In this paper, the computational complexity of the hypervol-
ume indicator was analyzed by relating it to problems from
computational geometry. By casting the hypervolume indicator
as a special case of Klee’s Measure Problem in d dimensions,
the existence of algorithms with lower worst-case complexity
than those currently used by practitioners in the field [9]-
[13] was readily established. In particular, the hypervolume
indicator may be computed in O(n logn + n¢/?) time [16].

A lower bound of Q(nlogn) for this problem was obtained
by reduction from the geometric problem of deciding whether
n points are equally spaced on a line. The proof exploits the
fact that the maximal value of the indicator for a finite set of
points located on a certain linear Pareto front is achieved only
when the distance between consecutive points is constant.

1081

Finally, a dedicated algorithm for the case of d = 3
was developed based upon an algorithm for the problem
of identifying the maximal elements of a set. The relation
between the two problems arises due to the fact that only
non-dominated (or maximal) points contribute to the value
of the indicator. As the obtained upper bound of O(nlogn)
matches the proved lower bound, the proposed algorithm is
asymptotically optimal, which improves over the previously
best result. In addition, its conceptual simplicity makes it pos-
sible to implement it efficiently, without hiding large constants
in the O-notation [14]. However, it is still possible that, in
practice, other algorithm implementations may run faster on
given input data sets.

The improvement of the current lower and upper bounds
when d > 3 remains an open problem. Future research
shall deal with the development of more efficient algorithms
for the hypervolume indicator in an arbitrary number of
dimensions by further exploiting the relationship with known
geometrical problems and taking advantage of existing results
and insights from computational geometry. Another direction
for future work is the empirical evaluation of those algorithms
in comparison to existing ones.
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